360 research outputs found

    Tuberculin skin test results in HIV-infected patients in India: implications for latent tuberculosis treatment

    Get PDF
    OBJECTIVE: To evaluate the utility of the tuberculin skin test (TST) in detecting latent and active tuberculosis (TB) among human immunodeficiency virus (HIV) infected patients in South India. DESIGN: TSTs and CD4 counts were collected from 631 HIV-infected individuals without active TB and 209 antiretroviral and anti-tuberculosis treatment-naïve HIVinfected patients with TB. We calculated the proportion of TST-positive individuals, as well as the sensitivity, specificity, positive predictive value (PPV) and negative predictive value of TST in the diagnosis of TB. RESULTS: Among subjects without active TB, 28% with a CD4 count �100 cells/�l vs. 43% of the total cohort had a TST �5 mm (P � 0.14), while the proportions with induration �10 mm were 14% vs. 36%, respectively (P � 0.01). Among those with active TB, using a 5 mm cut-off, the sensitivity was 42% for those with CD4 counts �200 cells/�l compared to 70% for those with CD4 counts �200 cells/�l (P � 0.001). The PPV for detecting active TB was 29%. CONCLUSIONS: TST is a poor predictor of both latent and active TB in HIV-infected individuals in TB endemic countries. Programmes offering treatment for latent TB should consider including all HIV-positive patients regardless of TST status, or use other indicators, such as CD4 count

    Vortex behavior near a spin vacancy in 2D XY-magnets

    Full text link
    The dynamical behavior of anisotropic two dimensional Heisenberg models is still a matter of controversy. The existence of a central peak at all temperatures and a rich structure of magnon peaks are not yet understood. It seems that the central peaks are related, in some way, to structures like vortices. In order to contribute to the discussion of the dynamical behavior of the model we use Monte Carlo and spin dynamics simulations as well analytical calculations to study the behavior of vortices in the presence of nonmagnetic impurities. Our simulations show that vortices are attracted and trapped by the impurities. Using this result we show that if we suppose that vortices are not very much disturbed by the presence of the impurities, then they work as an attractive potential to the vortices explaining the observed behavior in our simulations.Comment: 4 pages, 6 figure

    Baryons with Two Heavy Quarks as Solitons

    Get PDF
    Using the chiral soliton model and heavy quark symmetry we study baryons containing two heavy quarks. If there exists a stable (under strong interactions) meson consisting of two heavy quarks and two light ones, then we find that there always exists a state of this meson bound to a chiral soliton and to a chiral anti-soliton, corresponding to a two heavy quark baryon and a baryon containing two heavy anti-quarks and five light quarks, or a ``heptaquark".Comment: 7 pages and 2 postscript figures appended, LaTex, UCI-TR 94-3

    Monte Carlo study of the critical temperature for the planar rotator model with nonmagnetic impurities

    Full text link
    We performed Monte Carlo simulations to calculate the Berezinskii-Kosterlitz-Thouless (BKT) temperature TBKTT_{BKT} for the two-dimensional planar rotator model in the presence of nonmagnetic impurity concentration (ρ)(\rho). As expected, our calculation shows that the BKT temperature decreases as the spin vacancies increase. There is a critical dilution ρc0.3\rho_c \approx 0.3 at which TBKT=0T_{BKT} =0. The effective interaction between a vortex-antivortex pair and a static nonmagnetic impurity is studied analytically. A simple phenomenological argument based on the pair-impurity interaction is proposed to justify the simulations.Comment: 5 pages, 5 figures, Revetex fil

    Fully Inkjet-Printed Multilayered Graphene-Based Flexible Electrodes for Repeatable Electrochemical Response

    Get PDF
    Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects (e.g., edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer (k = 1.125 × 10−2 cm s−1) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN)6]−3/−4, which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications

    Role of Light Vector Mesons in the Heavy Particle Chiral Lagrangian

    Get PDF
    We give the general framework for adding "light" vector particles to the heavy hadron effective chiral Lagrangian. This has strong motivations both from the phenomenological and aesthetic standpoints. An application to the already observed D \rightarrow \overbar{K^*} weak transition amplitude is discussed.Comment: 19 pages, LaTeX documen

    Heavy Quark Solitons

    Get PDF
    We investigate the heavy baryons which arise as solitonic excitations in a ``heavy meson" chiral Lagrangian which includes the light vector particles. It is found that the effect of the light vectors may be substantial. We also present a simple derivation which clearly shows the connection to the Callan-Klebanov approach.Comment: 13 pages; LaTex; SU-4240-532; UR 1306/ER-40685-755 (Minor typos corrected

    Heavy Quark Solitons: Strangeness and Symmetry Breaking

    Get PDF
    We discuss the generalization of the Callan-Klebanov model to the case of heavy quark baryons. The light flavor group is considered to be SU(3)SU(3) and the limit of heavy spin symmetry is taken. The presence of the Wess-Zumino-Witten term permits the neat development of a picture , at the collective level, of a light diquark bound to a ``heavy" quark with decoupled spin degree of freedom. The consequences of SU(3)SU(3) symmetry breaking are discussed in detail. We point out that the SU(3)SU(3) mass splittings of the heavy baryons essentially measure the ``low energy" physics once more and that the comparison with experiment is satisfactory.Comment: 17 pages, RevTEX. Minor typos corrected and new references adde

    Digital adherence technologies for the management of tuberculosis therapy: mapping the landscape and research priorities

    Get PDF
    Poor medication adherence may increase rates of loss to follow-up, disease relapse and drug resistance for individuals with active tuberculosis (TB). While TB programmes have historically used directly observed therapy (DOT) to address adherence, concerns have been raised about the patient burden, ethical limitations, effectiveness in improving treatment outcomes and long-term feasibility of DOT for health systems. Digital adherence technologies (DATs)-which include feature phone-based and smartphone-based technologies, digital pillboxes and ingestible sensors-may facilitate more patient-centric approaches for monitoring adherence, though available data are limited. Depending on the specific technology, DATs may help to remind patients to take their medications, facilitate digital observation of pill-taking, compile dosing histories and triage patients based on their level of adherence, which can facilitate provision of individualised care by TB programmes to patients with varied levels of risk. Research is needed to understand whether DATs are acceptable to patients and healthcare providers, accurate for measuring adherence, effective in improving treatment outcomes and impactful in improving health system efficiency. In this article, we describe the landscape of DATs that are being used in research or clinical practice by TB programmes and highlight priorities for researc

    Morphology of supported polymer electrolyte ultra-thin films: a numerical study

    Full text link
    Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films has not been sufficiently explored yet. Here, we report about Molecular Dynamics simulation investigation of the substrate effects on the ionomer ultra-thin film morphology at different hydration levels. We use a mean-field-like model we introduced in previous publications for the interaction of the hydrated Nafion ionomer with a substrate, characterized by a tunable degree of hydrophilicity. We show that the affinity of the substrate with water plays a crucial role in the molecular rearrangement of the ionomer film, resulting in completely different morphologies. Detailed structural description in different regions of the film shows evidences of strongly heterogeneous behavior. A qualitative discussion of the implications of our observations on the PEMFC catalyst layer performance is finally proposed
    corecore