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Department of Physics, Syracuse University,

Syracuse, NY 13244-1130

Abstract

We give the general framework for adding “light” vector particles to the heavy hadron
effective chiral Lagrangian. This has strong motivations both from the phenomenolog-
ical and aesthetic standpoints. An application to the already observed D → K* weak
transition amplitude is discussed.
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1. Introduction

Recently there has been a lot of interest in the heavy quark (or Isgur-Wise) symmetry

[1] which pertains to a rigorous limit of QCD in which old fashioned quark model results

may be applied. This limit corresponds to keeping the four-velocity, Vµ of the heavy quark

fixed while taking its mass, M to infinity. A natural application of this approach is to the

chiral interactions of the heavy particles with “soft” pions and kaons. Indeed a number of

interesting papers [2, 3, 4, 5, 6] have already appeared. The resulting effective Lagrangians

can be used to relate amplitudes for processes with a fixed number and type of heavy

quarks but with any number of soft pseudoscalars. For example the amplitude for D+ →

e+νe is related to the amplitude for D0 → K−e+νe in the soft K− region. Continuing,

these amplitudes are related to that for D+ → K−π0e+νe with soft K− and π0. It

would be very interesting to compare such a relation with experiment. Unfortunately,

on consulting the Review of Particle Properties we learn [7] that “it is generally agreed

that the Kπe+νe decays of the D+ and D0 are dominantly K
∗
e+νe”. This is not very

surprising since it is known from low energy physics that two pseudoscalars often prefer to

make their appearance as a vector meson. In the future it will undoubtedly be possible to

disentangle the non-resonant two pseudoscalar piece. But this example provides a strong

motivation for including the light vector mesons in the formulation of the heavy particle

effective Lagrangian. We will begin the investigation of the heavy particle effective chiral

Lagrangian with vectors in the present paper. The application to D+ → K
∗0

e+νe will

also be discussed.

In section 2 we will discuss the derivation of the non-interacting part of the heavy

meson Lagrangian in order to set down our notation and make some points which will

be useful later on. Section 3 contains a brief treatment of the chiral Lagrangian of light

pseudoscalars and vectors as well as the interactions of these fields with the heavy mesons.

Compared to the heavy meson chiral Lagrangian with only light pseudoscalars there is

1



now a modified chiral covariant derivative as well as a characteristic new interaction term.

We will employ a phase convention for the “heavy meson fields” which is convenient for

making contact with “ordinary” meson fields and verifying the CP invariance of the theory.

In section 4 we will give the leading chiral covariant expression for the weak current and,

apply it, in section 5, to the soft light meson regions of the D0 → K− and D+ → K
∗0

transition matrix elements.

2. Derivation of non-interacting Lagrangian

Let us denote the heavy mesons associated with each heavy flavor as being made out

of the heavy quark (rather than anti quark); symbolically

heavy meson field ∼ qlightqheavy. (2.1)

Since there are three light flavors, (2.1) should be regarded as a three component row

vector for each heavy flavor. In the presently known cases we thus have the experimental

pseudoscalar objects (D0, D+, D+
s ) and (B

−
, B

0
, B

0
s).

For our purpose it will be instructive to derive a heavy meson field effective Lagrangian

directly from an ordinary field effective Lagrangian, in analogy ot the treatment [8] [1] of

the heavy quark effective Lagrangian. Let us first consider the non-interacting terms

Lfree(P ) = −∂µP∂µP − M2PP, (2.2)

for the heavy pseudoscalar (row vector) field P (x) of mass M . Note that P ≡ P † and that

we are employing the “Euclidean” metric convention with x4 = it. In order to implement

the basic idea that deviations from straight line motion with 4-velocity Vµ of the heavy

meson be small we make the change of variables

P = eiMV ·xP ′

P = e−iMV ·xP
′
. (2.3)
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Vµ should be considered as fixed. Furthermore, in the free field expansion

P =
∑

K

1
√

2EKV

(

aKeiK·x + b†Ke−iK·x
)

, (2.4)

we are considering that the anti-particle operators bK should be neglected. (In the in-

teracting theory, the anti-particles won’t be excited as M → ∞). Substituting (2.3) into

(2.2) yields

Lfree(P
′) = −iMVµP ′

↔

∂µ P
′ − ∂µP

′∂µP
′
. (2.5)

Notice that the terms of order M2 have cancelled out. The second term in (2.5) is

negligible as M → ∞ so we simply have in the heavy quark limit

Lfree(P
′) = −2iMVµP ′∂µP

′
. (2.6)

This can be simplified further by redefining

P ′′ = M1/2P ′ (2.7)

to give a form in which the mass independence is manifest,

Lfree(P
′′) = −2iVµP

′′∂µP
′′

(2.8)

However, P ′′ has the non-canonical dimension 3
2
.

Let us next consider the heavy vector field Qµ, which is relevant because it belongs

[1] to the same heavy spin multiplet as P . The free Lagrangian in terms of ordinary spin

one fields is

Lfree(Q) = −1

2
(∂µQν − ∂νQµ)(∂µQν − ∂νQµ) − M2QµQµ,

Qµ = (−1)δµ4Q†µ. (2.9)

The transformation

Qµ = eiMV ·xQ′µ
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Qµ = e−iMV ·xQ
′

µ (2.10)

then yields the “small oscillation” Lagrangian,

Lfree(Q
′) = −2iMVνQ

′
µ∂νQ

′

µ, (2.11)

in which the subsidiary condition VµQ
′
µ = 0 was imposed and a term negligible as M → ∞

was dropped.

Note that (2.6) and (2.11) both have the same structure. This is to be expected by

the heavy quark symmetry and can be made [9] [1] manifest by amalgamating P ′ and Q′µ

into a single “heavy quark” field, H :

H =
(

1 − iγ · V
2

)

(ηγ5P
′ + iγ · Q′),

H ≡ γ4H
†γ4 = (−η∗γ5P

′
+ iγ · Q′)

(

1 − iγ · V
2

)

. (2.12)

Here H is a 4 × 4 matrix in the Dirac spinor space and the coefficients of P ′ and Q′µ are

the kinematical operators which respectively project out the pseudoscalar and the vector

combinations from qlightqheavy. η is an arbitrary phase which we will choose as

η = i, (2.13)

for a reason to be discussed later. In contrast, η is chosen to be purely real in ref. 2.

Using (2.12), the sum of (2.6) and (2.11) can be compactly written as:

Lfree(P
′, Q′) = iMVµTr(H∂µH), (2.14)

where the trace refers to the 4 × 4 Dirac space. There is also an implied summation in

the light flavor space since H is a row vector and H is a column vector. The use of the H

field evidently [1] guarantees the invariance under heavy quark spin transformations (in

the Dirac space): H → SH, H → HS−1.
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Since (2.14) represents the heavy quark limit of (2.2) plus (2.9) one might think that

the sum of (2.2) plus (2.9) before taking the limit should be more compactly written using

an H defined in terms of P and Qµ (rather than P ′ and Q′µ) as

1

2
Tr(∂µH∂µH) +

1

2
M2Tr(HH).

This expression is not however consistent even though it does reproduce (2.14) in the

heavy quark limit after the substitutions (2.3) and (2.10) are made. The reason is that

it gives a vector kinetic term −∂µQν∂µQν which (unlike (2.9)) is well-known to lead to

a Hamiltonian unbounded from below. This example illustrates the danger of using H

outside the heavy quark regime.

We remark that even though (2.14) [as well as the interacting analogs to be discussed

later] is very compact it is not any more difficult to use the sum of (2.2) and (2.9) for

practical calculations. This is because the Feynman rules for ordinary mesons are very well

known and we can just substitute for the heavy quark momentum Kµ, Kµ = MVµ + K ′µ

at the end of the calculation. From this point of view the heavy quark symmetry just tells

us to put the P and Qµ masses equal and to equate certain coefficients of the interaction

Lagrangian. Certainly it is useful to keep both approaches in mind. In one respect the use

of the ordinary fields might actually appear more convenient. That is the case when we

want to consider the heavy limit for mesons containing heavy anti-quarks. The ordinary

fields contain both quark and antiquark operators as in (2.4) so the calculation can be

done using standard techniques. However, by construction, the heavy quark Lagrangian

makes no reference to antiquarks. Of course this is not a big problem and one can define

a heavy anti-particle Lagrangian in a similar way. We would then like to choose the

heavy anti-particle fields to be related to the heavy particle fields in the same way that

the ordinary fields describe both particles and anti-particles. What this amounts to is

choosing a phase convention so that the right hand sides of (2.3) and (2.10) transform in

the same way under charge conjugation as the left hand sides. That turns out to be the
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reason for our choice (2.13).

3. Chiral Interaction Terms

First consider the three light (current) quarks, q. Under a chiral transformation

qL → ULqL, qR → URqR, (3.1)

where UL and UR are 3 × 3 unitary matrices. The chiral matrix U = exp[2iφ/Fπ], where

φ is the 3 × 3 matrix of pseudoscalars and Fπ ≃ 132 MeV, is constructed [10] in such a

way that the interaction term qLUqR + h.c. is invariant. This implies U → ULUU †R. The

interaction term is converted to a light quark “constituent” mass term by the change of

variables qL = ξq̃L, qR = ξ†q̃R with ξ ≡ U1/2. The transformation property of U implies

[11]

ξ → ULξK† = KξU †R, (3.2)

where the unitary matrix K depends on UL, UR as well as φ and is determined from (3.2).

We note that the “constituent” fields transform as q̃L → Kq̃L and q̃R → Kq̃R. The vector

and pseudovector combinations:

vµ =
i

2
(ξ∂µξ

† + ξ†∂µξ)

pµ =
i

2
(ξ∂µξ

† − ξ†∂µξ) (3.3)

are seen to transform as

vµ → KvµK
† + iK∂µK†

pµ → KpµK
†. (3.4)

Using (3.4) we can construct a covariant chiral derivative acting on “constituent” type

fields:

Dµq̃ = (∂µ − ivµ)q̃,
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Dµq̃ → KDµq̃. (3.5)

These transformation properties enable us to simply construct chiral invariants.

Before adding the heavy fields into this picture let us add the “light” vector fields.

There is a strong phenomenological motivation to do so, of course. But there is also a

kind of aesthetic reason which is motivated by the heavy quark symmetry. This is simply

that the heavy meson multiplet (2.12) involves both pseudoscalars and vectors. If we

want to imagine models in which we can try to extrapolate some quark masses up and

down it is necessary to include all relevant degrees of freedom.

It is straightforward to introduce both vector and axial vector mesons as linear com-

binations of fields transforming like

AL
µ → ULAL

µU−1
L , AR

µ → URAR
µ U−1

R . (3.6)

For reasons of economy (and because we are not including the other ℓ = 1 qq states) we

would like to “integrate out” the axials, analogously to the way one “integrates out” the

scalar sigma meson in arriving at the non-linear sigma model. This can be done [12] by

writing AL
µ and AR

µ in terms of the physical vector field ρµ (a 3 × 3 matrix):

AL
µ = ξρµξ

† +
i

g̃
ξ∂µξ

†

AR
µ = ξ†ρµξ +

i

g̃
ξ†∂µξ, (3.7)

where g̃ is a vector meson coupling constant. ρµ is seen to transform as

ρµ → KρµK
† +

i

g̃
K∂µK

† (3.8)

so that Fµν(ρ) = ∂µρν − ∂νρµ − ig̃[ρµ, ρν ] transforms as

Fµν(ρ) → KFµν(ρ)K†. (3.9)

It is easy to construct chiral invariants using (3.6) and (3.9). The “minimal” chiral

Lagrangian of light pseudoscalars and vectors is then simply [12] [13]

Llight = −1

4
Tr[Fµν(ρ)Fµν(ρ)]
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−m2
v

8K
(1 + K)Tr(AL

µAL
µ + AR

µ AR
µ ) +

m2
v

4K
(1 − K)Tr(AL

µUAR
µ U †),

K = (mv/Fπg̃)2, (3.10)

where mv is the light vector meson mass. Note that (3.10) also contains the kinetic and

interaction terms of the pseudoscalar mesons. Chiral symmetry breaking terms as well

as terms proportional to ǫµναβ are given elsewhere. [12] [14] The coupling constant g̃ is

related [14] to the width Γ(ρ → 2π); a suitable value is

g̃ ≃ 3.93. (3.11)

Now consider the “ordinary” heavy meson fields P and Qµ discussed in section 2.

Under the chiral transformations only the light “constituent” degrees of freedom transform

so (see (2.1)) we have

P → PK†, Qµ → QµK
†. (3.12)

We can upgrade (2.2) and (2.9) to chiral invariants involving interactions with light pseu-

doscalars and vectors merely by replacing the derivative operators appearing there by

suitable covariant derivatives. At this point, however, there is an interesting choice. As

can be seen from (3.5) and (3.8) both the vector combination of pseudoscalars, vµ and

the vector particles, ρµ transform in the same way. Let us therefore define a generalized

covariant derivative,

DµP = [∂µ − iαg̃ρµ − i(1 − α)vµ]P,

DµP = P [
←

∂µ +iαg̃ρµ + i(1 − α)vµ]. (3.13)

(The same definitions hold for Qν and Qν .) The dimensionless parameter α specifies

the extent to which two emitted pseudoscalars in a relative p-wave like to arise from an

intermediate vector state; α = 1 would correspond to “vector meson dominance”. Our

prejudice is that α should be close to unity. However, α should eventually be found by
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comparing calculations in this model to experiment. Now, making the substitutions (2.3)

and (2.10) in the “covariantized” (2.2) and (2.9) yields for the small oscillation fields

L(1)
heavy = iMVµTr[H(∂µ − iαg̃ρµ − i(1 − α)vµ)H], (3.14)

in which terms O(1) in M were neglected and (2.12) was used. Note that the “Tr” symbol

pertains to the Dirac space while the light flavor space summation is implicit.

Before discussing other chiral invariant interaction terms let us give the hermiticity

and CP transformation properties for the quantities involved. Under hermiticity

P ↔ P, Qµ ↔ (−1)δµ4Qµ,

ρµ ↔ (−1)δµ4pµ, pµ ↔ (−1)δµ4pµ,

∂µ ↔ (−1)δµ4∂µ, (3.15)

while the usual phase conventions would give the CP properties:

P ↔ −P
T
, Qµ ↔ (−1)δµ4Q

T
µ ,

ρµ ↔ (−1)δµ4ρT
µ , pµ ↔ (−1)δµ4pT

µ ,

∂µ ↔ −(−1)δµ4∂µ. (3.16)

If we want to implement an effective CP operation for the heavy primed fields so that the

same Lagrangian describes both the heavy quark and heavy antiquark sectors we should

demand that under CP:

P ′ ↔ −P
′T

, Q′µ ↔ (−1)δµ4Q
′T
µ .

Vµ ↔ (−1)δµ4Vµ (3.17)

Note especially that the behavior of Vµ follows from requiring, for example, that

VµP
′ → −(−1)δµ4VµP

′T
to match, using (2.3), the result for ordinary fields that

∂µP → (−1)δµ4∂µP
T
. It was shown in ref. 2 that an interaction term

L(2)
heavy = iMdTr(Hγµγ5pµH) (3.18)
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plays an important role. d is a real dimensionless constant. Let us expand this, using

(2.12), to find

L(2)
heavy = 2Md[ηP ′pµQ

′

µ + η∗Q′µpµP

+ ǫβαρµVρQ
′
αpµQ

′

β]. (3.19)

As it stands (3.18) is hermitean. But, using the mnemonics in (3.17) and (3.16) we see

that the first term goes to −ηQ′µpµP
′
under CP. In order to agree with the second term

we require η = −η∗, which is satisfied by choosing η = i. It may be verified that the

third term is also CP invariant. We note that (3.19) is descended from the ordinary field

Lagrangian

L(2)
heavy(P, Q) = 2iMd[PpµQµ − QµpµP

− 1

2M
ǫβαρµ(DρQαpµQβ − QαpµDρQβ)]. (3.20)

The heavy quark symmetry has related the coefficients of the two different pieces in (3.20).

Another important chiral invariant interaction may be written in the heavy symmetry

limit

L(3)
heavy =

icM

mv
Tr(HγµγνFµν(ρ)H)

=
−2cM

mv
[2iQ′µFµν(ρ)Q

′

ν + ǫµναβVβ(P ′Fµν(ρ)Q
′

α − Q′αFµν(ρ)P
′
)], (3.21)

where c is a dimensionless constant and the light vector mass mν appears just for dimen-

sional reasons. Equation (3.21) is the limit of the ordinary field Lagrangian,

L(3)
heavy(P, Q) =

2icM

mv

[

−2QµFµν(ρ)Qν

+
1

M
ǫµναβ(DβPFµν(ρ)Qα + QαFµν(ρ)DβP )

]

. (3.22)

Again, CP invariance may be verified and heavy quark symmetry is seen to have related

the coefficients of the two pieces. We can also construct a term similar to (3.21) or (3.22)

in which Fµν(ρ) is replaced by Fµν(v) = ∂µvν − ∂νvµ − i[vµ, vν ]:

L(3)′

heavy =
ic′M

Fπ
Tr(HγµγνFµν(v)H). (3.23)
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In the spirit of (light) vector meson dominance we would expect this term to be less

important. However it would play a role in a model where vectors are neglected.

To sum up, the leading terms of the chiral invariant heavy meson Lagrangian written

in terms of the doublet H field are

Lheavy = (3.14) + (3.18) + (3.21). (3.24)

These involve the new coupling constants c and d as well as the parameter α which would

be unity in the vector meson dominance approximation. We will not explicitly write the

chiral symmetry breaking terms here. Strictly speaking, (3.24) is defined only for mesons

with a heavy quark. A continuation of (3.24) to “ordinary” heavy fields (containing also

meson states with heavy antiquarks) is provided by

L(P, Q) = [(2.2) + (2.9)]with∂µ → Dµ + (3.20) + (3.22). (3.25)

The mutual consistency of (3.24) and (3.25) led to the determination of the phase η in

the definition of H , (2.12). These Lagrangians should be used for large M and small

momenta (more precisely, small p · V ) of the light pseudoscalars and vectors.

4. Weak currents

One of the main applications [1] of the heavy quark approach is to the semi-leptonic

decays of heavy mesons. These are governed by the effective weak interaction

LW =
GF√

2
J (+)

µ (x)J (−)
µ (x),

J (−)
µ = i

∑

ℓ,k

uℓVℓkγµ(1 + γ5)dk + iνeγµ(1 + γ5)e + · · · ,

J (+)
µ = (−1)δµ4J (−)†

µ , (4.1)

wherein GF is the Fermi constant, Vℓk is the quark mixing (Kobayashi Maskawa) matrix,

ul is the ℓth charge 2/3 quark, dk is the kth charge -1/3 quark and other leptonic terms (as
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well as possible lepton mixings) have not been included. Note that if the matrix elements

of Vℓk were all real, J (−)
µ would go to J (+)

µ under CP and LW would be CP invariant. The

hadronic currents of immediate interest are

J (−)
µ = iVcscγµ(1 + γ5)s + iVubuγµ(1 + γ5)b + · · · ,

J (+)
µ = iV ∗cssγµ(1 + γ5)c + iV ∗ubbγµ(1 + γ5)u + · · · . (4.2)

In this paper we will confine our attention to hadronic transitions (current matrix ele-

ments) of the form heavy meson → light mesons. We need the realization of the operator

iqaγµ(1+γ5)qheavy, where qa is a light quark, in terms of meson fields. The normalizations

are provided by the matrix elements for the pseudoscalar → vacuum transitions:

iqaγµ(1 + γ5)qheavy = F∂µPa + · · · ,

iqheavyγµ(1 + γ5)qa = F∂µP a + · · · , (4.3)

where F is the decay constant for each particular heavy meson. (In this normalization

convention Fπ ≃ 132 MeV). Heavy quark symmetry gives the normalization for the heavy

vector → vacuum transition in terms of F . The leading order chiral covariant generaliza-

tion was already presented in ref. 2. In our notation it reads

iqaγµ(1 + γ5)qheavy =
−iFM

2
Tr[γµ(1 + γ5)Hb]ξ

†
ba + · · · ,

iqheavyγµ(1 + γ5)qa =
−iFM

2
ξabTr[γµ(1 + γ5)Hb] + · · · , (4.4)

wherein all fields are being evaluated at xµ = 0 (to eliminate a phase which would arise

when (4.4) is derived using (2.3), (2.10) and (2.12)). The factor of ξ in the second equation,

for example, is required for chiral covariance: The quark current on the LHS transforms

with a factor UL. On the other hand H → KH. Using (3.2) it is seen that ξH → UL(ξH).

Eq. (4.4) gives the currents in the heavy quark limit. It is descended from (using (2.3),

(2.10) and neglect of subleading terms in M) the “ordinary field” currents

iqaγµ(1 + γ5)qheavy = F (DµPb + MQbµ)(ξ†)ba + · · · ,
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iqheavyγµ(1 + γ5)qa = Fξab(DµP b + MQbµ) + · · · . (4.5)

Note that the covariant derivatives include pieces proportional to ρµ which are formally

suppressed by 1
M

.

Without necessarily endorsing the notions that the c quark is truly heavy and the s

quark is truly light we give a specific example of a term in (4.2) and (4.5):

J (+)
µ = V ∗csFD[∂µDb + iαg̃Dcρµcb + i(1 − α)vµcb + MDD∗µb](ξ)

†
β3 + · · · , (4.6)

where Db = (D0, D+, D+
s ) and D∗µb denotes the vector triplet field. We will present results

for the D → K and D → K
∗

transitions based on (4.6). Essentially identical formulas

will hold for the B → π and B → ρ transitions, etc.

5. Applications

For orientation let us first consider the hadronic matrix element for the decay

D0 → K−e+νe, even though it is practically the same as that for B
0 → π+e−νe, already

discussed. [1] [4] The invariant matrix element is parametrized by

√

4p0p
′
0V

2 < K−(p′)|J+
µ |D0(p) >= V ∗cs[f+(q2)(p + p′)µ + f−(q2)(p − p′)µ], (5.1)

where q = p − p′. There is first of all, a direct transition which is read off from (4.6)

and (3.3) to be V ∗cs
FD

Fπ
pµ. In addition, there is a contribution from the D∗+s pole diagram.

This has three factors: V ∗csMFD from (4.6), 2iMdp′ν/Fπ from (3.20) and the usual D∗+s

propagator. Putting everything together gives:

f+ + f− =
FD

Fπ

[

1 +
2dM2p′ · q

M∗2
s

1

q2 + M∗2
s

]

,

f+ − f− = 2dM2 FD

Fπ

1 − p′ · q/M∗2
s

q2 + M∗2
s

. (5.2)

These formulas are expected to be valid only for soft kaons, p′ ·V small where Vµ = pµ/M .

They may be simplified by writing qµ = MVµ − p′µ and formally neglecting terms O(p′2)
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to yield [1]

f+ + f− =
FD

Fπ

[

1 +
dV · p′

∆ − p′ · V

]

,

f+ − f− =
FD

Fπ

dM

∆ − p′ · V , (5.3)

where ∆ = M∗
s − M . We may check the large M scaling laws which say [1] that (5.1)

should be of order M1/2. f+ +f− is the coefficient of MVµ so it should go as M−1/2 which

it does because FD ∼ M−1/2. On the other hand f+ − f− is the coefficient of p′µ so it

should go as M1/2. That it does so is most evident from (5.3). Note that in the extreme

M → ∞ limit we thus expect f+ + f− to vanish. In this limit

f+(q2) ∼ dM2FD/Fπ

q2 + M∗2
s

(5.4)

We should stress that (5.4) is theoretically justified only near q2 = −M2; there is no

reason for it to hold near q2 = 0 in the present approach. Nevertheless, Anjos et.al. [15]

find that such a global form fits their experiment with f+(0) = 0.79 ± 0.05 ± 0.06. This

would imply

d
FD

Fπ
≈ 1, (5.5)

which may perhaps be safely interpreted as giving the rough order of magnitude of d

(Wise [1] finds |d| < 1.7).

Now let us turn to the matrix element

√

4p0p′0V
2 < K

∗0
(p′, ǫ)|J (+)

µ /V ∗cs|D+(p) >, (5.6)

where ǫ is the K
∗0

polarization vector, which is relevant for D+ → K
∗0

e+νe. One would

of course expect the transition B → ρ to be a case which is better approximated in our

approach. The predicted formulas would be the same but we have chosen the case in

(5.6) because experimental data exist for it. According to the large M scaling rules, (5.6)

behaves as M1/2, just like (5.1). [Actually, with our state normalization convention, this

can be read off from the external heavy meson factor
√

p0 on the LHS]. There are several
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contributions to (5.6) from the leading order current operator (4.6) together with the

heavy Lagrangian (3.25). First there is a direct contribution from (4.6):

iαg̃FDǫµ (5.7)

where ǫµ = (−1)δµ4ǫ∗µ. However this formally goes as M−1/2 and must be interpreted as

vanishing in the strict heavy quark limit. There is also a D+
s pole contribution which is

found from (4.6) and the covariantized heavy kinetic term to be:

− 2iαg̃FD
p · ǫqµ

q2 + M2
s

, (5.8)

where qµ = pµ − p′µ. Because of the overall qµ this term will not contribute to physical

processes to the extent that the lepton current is conserved (where me is negligible). It

may, however, be someday measured in D+ → K
∗0

µ+νµ. Its heavy quark limit is obtained

by setting pµ = MVµ, qµ = MVµ − p′µ and considering p′µ small; the result

− iαg̃FDM
V · ǫVµ

(Ms − M) − p′ · V (5.9)

immediately shows that (5.8) properly scales as M1/2. The remaining leading contribution

to (5.6) is of vector rather than axial-vector type; using (4.6) and (3.22) we find that the

D∗+s pole diagram gives

4icFD(M/mv)ǫσνµβ
pβp′σǫν

q2 + M∗2
s

, (5.10)

where mv is the light vector mass and c is the new coupling constant introduced in (3.22).

Its heavy quark limit,

2icFD(M/mv)ǫσνµβ
Vβp′σǫν

(M∗
s − M) − p′ · V (5.11)

is seen to scale as M1/2 (with c scaling as M0).

To sum up, our result for the D → K
∗

transition matrix element is given by adding

(5.7), (5.8) and (5.10). It should be used only for q2 near −M2. In particular, there is no

justification for using it near q2 = 0.
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The experimental situation, which has recently been reviewed by Pham [16], is a little

complicated since three different form factors (one other proportional to pµ in addition to

those in (5.7) and (5.10)) must be inferred from the data. He shows that the coefficient

of ǫµ is most crucial in establishing the overall rate; with a phenomenological q2 damping

the coefficient of ǫµ at q2 = 0 is found to be roughly 1.4 GeV in magnitude. This might

be contrasted with our (5.7) which (for α = 1) has a magnitude of about 0.6 GeV. Note

that (5.7) is only expected to be valid near q2 = −M2. Typically the form factors fall

with increasing −q2 so our result does not seem unreasonable. Since (5.7) vanishes in the

M → ∞ limit, this also provides a caution about using the infinite M limit for the D

meson. Continuing, Pham finds that the coefficient of pµ in (5.6) is perhaps consistent

with zero. This feature would also agree with our result. Finally, the coupling constant

c could be eventually determined by comparison of the experimental vector-type form

factor in the q2 ≈ −M2 region with (5.10).

All in all, the use of the chiral symmetric expression (5.7) + (5.8) + (5.10) for small

light vector momenta does not seem to be unreasonable at our present stage of experimen-

tal understanding of the process D+ → K
∗0

e+νe. For D decays, at least, it seems better

to use the expression (5.7) which follows from the “ordinary” field Lagrangian rather

than its strict M → ∞ limit (of zero). In the future it would be interesting to include

terms non-leading in M and also terms containing more derivatives of the light fields. An

example of the latter which has a piece giving a direct (non-pole) heavy pseudoscalar →

light vector transition is (cf (4.5)):

iqaγµ(1 + γ5)qheavy = · · ·+ iβDνPc[Fµν(ρ)]cb[ξ
†]ba + · · · , (5.12)

where β is a real constant. This yields the extra contribution to the matrix element (5.6):

iβ[p · ǫ(pµ − qµ) + p · p′ǫµ]. (5.13)

This is seen to contain a piece proportional to pµ which was absent from our leading order
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result above.

6. Summary

We have given the general framework for adding “light” vector particles to the heavy

hadron effective chiral Lagrangian. The leading order in M strong Lagrangian was pre-

sented in section 3 with special attention to a convenient phase convention for including

the anti-quark sector. There are many possible applications, the most immediate being

to the semi-leptonic decays of heavy mesons. We discussed the process D+ → K
∗0

e+νe

(chosen because data exists) and found that the leading order result was reasonable at

our present stage of experimental knowledge. In the future it would be instructive to

compare the results with those computed for D+ → K−π+e+ve. Many other processes

with (extra) “soft” light vectors and/or pseudoscalars can be considered. Decays like

B → Dρeνe are very natural to look at next. Progress along these and similar lines will

be reported elsewhere.
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