44 research outputs found

    Determining Star Formation Rates for Infrared Galaxies

    Get PDF
    We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 um or extinction-corrected Paschen-alpha luminosities are consistent in the total infrared luminosity = L(TIR) ~ 10^10 L_sun range. MIPS 24 micron photometry can yield star formation rates accurately from this luminosity upward: SFR(M_sun/yr) = 7.8 x 10^-10 L(24 um, L_sun) from L(TIR) = 5 x 10^9 L_sun to 10^11 L_sun, and SFR = 7.8 x 10^-10 L(24 um, L_sun) x (7.76 x 10^-11 L(24))^0.048 for higher L(TIR). For galaxies with L(TIR) >= 10^10 L_sun, these new expressions should provide SFRs to within 0.2 dex. For L(TIR) >= 10^11 L_sun, we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Pa-alpha (and presumably using any other optical or near infrared recombination lines). As a part of this work, we constructed spectral energy distribution (SED) templates for eleven luminous and ultraluminous purely star forming infrared galaxies (LIRGs and ULIRGs) and over the spectral range 0.4 microns to 30 cm. We use these templates and the SINGS data to construct average templates from 5 microns to 30 cm for infrared galaxies with L(TIR) = 5 x 10^9 to 10^13 L_sun. All of these templates are made available on line.Comment: Accepted by ApJ. Revised in proof to strengthen caveats about the extrapolation of these IR templates above L(TIR)>2e12, without suitable local purely starforming template galaxies above this luminosity. Source includes two machine-readable tables of template spectra SEDs, or download the tables from http://mingus.as.arizona.edu/~bjw/ir_templates

    Organizational transition management of circular business model innovations

    Get PDF
    Scholars and practitioners across fields increasingly recognize that business models for the circular economy may be an effective lever for solving ecological persistent problems such as climate change, biodiversity loss, and growing natural resource scarcity. Despite a growing interest in the potential of circular business models, interconnections between the organizational dimensions of firms and their business model innovation processes remain underexplored. Based on problem‐centered expert interviews with business consultants experienced in circular business development, this study creates a conceptual model that offers structured knowledge about why firms steadily reproduce linear BMs and how incumbents manifest themselves as a constant linear‐oriented value creation system. The model also demonstrates organizational conditions and management strategies that frustrate the reproduction of linear BMs and, thus, enable initial moves towards CBM innovation. Building on this, the article provides a set of propositions on how an organizational transition management may be configured and what incumbents require to successfully navigate circular business model innovation. The findings provide a foundation for a contemporary understanding of circular business model transition management, which simultaneously serve as impulses for future research investigations.TU Berlin, Open-Access-Mittel – 202

    Die Organisation – Das Innovative Unternehmen

    No full text

    Management of Production Enterprises

    No full text

    Adoption and success of e HRM in a cloud computing environment: A field study

    Full text link
    [EN] This qualitative study examines the digitisation of HRM in a cloud-based environment. The influencing factors for the transformation from conventional HRM to eHRM are examined with a special focus on the success factors from a strategic to the operational level. Additionally, an in-depth analysis of the currently existing and new HR metrics which emerge during the transformation takes place. The study is based on interviews with HR experts with extensive experience in transforming and working with the new technology. Active participation of the HR department is relevant for the success of the digital transformation HRM project. HR metrics have not been applied extensively so far and are used less for controlling and optimizing HR processes. New metrics would increase the acceptance of the new technology and thus the success of the overall HR transformation. The main contribution is related to the field of HR software adoption of cloud-based solutionsZiebell, R.; Albors GarrigĂłs, J.; Schoeneberg, K.; PerellĂł MarĂ­n, MR. (2019). Adoption and success of e HRM in a cloud computing environment: A field study. International Journal of Cloud Applications and Computing. 9(2):1-27. https://doi.org/10.4018/IJCAC.2019040101S12792Alam, M. G. R., Masum, A. K. M., Beh, L.-S., & Hong, C. S. (2016). Critical Factors Influencing Decision to Adopt Human Resource Information System (HRIS) in Hospitals. PLOS ONE, 11(8), e0160366. doi:10.1371/journal.pone.0160366Amalou-Döpke, L., & SĂŒĂŸ, S. (2014). HR measurement as an instrument of the HR department in its exchange relationship with top management: A qualitative study based on resource dependence theory. Scandinavian Journal of Management, 30(4), 444-460. doi:10.1016/j.scaman.2014.09.003Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: why HR is set to fail the big data challenge. Human Resource Management Journal, 26(1), 1-11. doi:10.1111/1748-8583.12090Bogner, A., Littig, B., & Menz, W. (2014). Interviews mit Experten. doi:10.1007/978-3-531-19416-5Bondarouk, T., Harms, R., & Lepak, D. (2015). Does e-HRM lead to better HRM service? The International Journal of Human Resource Management, 28(9), 1332-1362. doi:10.1080/09585192.2015.1118139Bondarouk, T., Parry, E., & Furtmueller, E. (2016). Electronic HRM: four decades of research on adoption and consequences. The International Journal of Human Resource Management, 28(1), 98-131. doi:10.1080/09585192.2016.1245672Bondarouk, T., RuĂ«l, H., & van der Heijden, B. (2009). e-HRM effectiveness in a public sector organization: a multi-stakeholder perspective. The International Journal of Human Resource Management, 20(3), 578-590. doi:10.1080/09585190802707359Bondarouk, T. V., & RuĂ«l, H. J. M. (2009). Electronic Human Resource Management: challenges in the digital era. The International Journal of Human Resource Management, 20(3), 505-514. doi:10.1080/09585190802707235Bondarouk, T., & RuĂ«l, H. (2013). The strategic value of e-HRM: results from an exploratory study in a governmental organization. The International Journal of Human Resource Management, 24(2), 391-414. doi:10.1080/09585192.2012.675142Boselie, P., & Paauwe, J. (2005). Human resource function competencies in European companies. Personnel Review, 34(5), 550-566. doi:10.1108/00483480510612512Iles, P., Chuai, X., & Preece, D. (2010). Talent Management and HRM in Multinational companies in Beijing: Definitions, differences and drivers. Journal of World Business, 45(2), 179-189. doi:10.1016/j.jwb.2009.09.014Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Management, (April), 291.Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008Dery, K., Hall, R., Wailes, N., & Wiblen, S. (2013). Lost in translation? An actor-network approach to HRIS implementation. The Journal of Strategic Information Systems, 22(3), 225-237. doi:10.1016/j.jsis.2013.03.002Fisher, S. L., & Howell, A. W. (2004). Beyond user acceptance: An examination of employee reactions to information technology systems. Human Resource Management, 43(2-3), 243-258. doi:10.1002/hrm.20018Florkowski, G. W., & Olivas‐LujĂĄn, M. R. (2006). The diffusion of human‐resource information‐technology innovations in US and non‐US firms. Personnel Review, 35(6), 684-710. doi:10.1108/00483480610702737Francis, H., Parkes, C., & Reddington, M. (2014). E-HR and international HRM: a critical perspective on the discursive framing of e-HR. The International Journal of Human Resource Management, 25(10), 1327-1350. doi:10.1080/09585192.2013.870309Garbarino-Alberti, H. (2013). IT Governance and Human Resources Management: A Framework for SMEs. International Journal of Human Capital and Information Technology Professionals, 4(3), 40-57. doi:10.4018/jhcitp.2013070104GlĂ€ser, J., & Laudel, G. (2010). Experteninterviews und qualitative Inhaltsanalyse. doi:10.1007/978-3-531-91538-8Grant, D., & Newell, S. (2013). Realizing the strategic potential of e-HRM. The Journal of Strategic Information Systems, 22(3), 187-192. doi:10.1016/j.jsis.2013.07.001Gummesson, E. (2006). Qualitative research in management: addressing complexity, context and persona. Management Decision, 44(2), 167-179. doi:10.1108/00251740610650175Harris, S., & Spencer, E. (2018). The Sierra-Cedar 2017–2018 HR Systems Survey 20th Annual Edition.HeikkilĂ€, J.-P., Brewster, C., & Mattila, J. (2013). Micro-Political Conflicts and Institutional Issues During e-HRM Implementation in MNCs: A Vendor’s View. Human Resource Management and Technological Challenges, 1-21. doi:10.1007/978-3-319-02618-3_1Jafari Navimipour, N., Rahmani, A. M., Habibizad Navin, A., & Hosseinzadeh, M. (2015). Expert Cloud: A Cloud-based framework to share the knowledge and skills of human resources. Computers in Human Behavior, 46, 57-74. doi:10.1016/j.chb.2015.01.001Khan, H., Hussainy, S. K., Khan, K., & Khan, A. (2017). The applications, advantages and challenges in the implementation of HRIS in Pakistani perspective. VINE Journal of Information and Knowledge Management Systems, 47(1), 137-150. doi:10.1108/vjikms-01-2016-0005King, K. G. (2016). Data Analytics in Human Resources. Human Resource Development Review, 15(4), 487-495. doi:10.1177/1534484316675818Laumer, S., Maier, C., & Eckhardt, A. (2014). The impact of business process management and applicant tracking systems on recruiting process performance: an empirical study. Journal of Business Economics, 85(4), 421-453. doi:10.1007/s11573-014-0758-9Lepak, D. P., & Snell, S. A. (1998). Virtual HR: Strategic human resource management in the 21st century. Human Resource Management Review, 8(3), 215-234. doi:10.1016/s1053-4822(98)90003-1Lin, A., & Chen, N.-C. (2012). Cloud computing as an innovation: Percepetion, attitude, and adoption. International Journal of Information Management, 32(6), 533-540. doi:10.1016/j.ijinfomgt.2012.04.001Lin, L.-H. (2011). Electronic human resource management and organizational innovation: the roles of information technology and virtual organizational structure. The International Journal of Human Resource Management, 22(2), 235-257. doi:10.1080/09585192.2011.540149Low, C., Chen, Y., & Wu, M. (2011). Understanding the determinants of cloud computing adoption. Industrial Management & Data Systems, 111(7), 1006-1023. doi:10.1108/02635571111161262Maatman, M. (2006). Measuring the effectiveness of e-HRM: the development of an analytical framework for the measurement of e-HRM and its application within a Dutch Ministry. University of Twente. Retrieved from http://essay.utwente.nl/583/1/scriptie_Maatman.pdfMaier, C., Laumer, S., Eckhardt, A., & Weitzel, T. (2013). Analyzing the impact of HRIS implementations on HR personnel’s job satisfaction and turnover intention. The Journal of Strategic Information Systems, 22(3), 193-207. doi:10.1016/j.jsis.2012.09.001Marler, J. H. (2009). Making human resources strategic by going to the Net: reality or myth? The International Journal of Human Resource Management, 20(3), 515-527. doi:10.1080/09585190802707276Marler, J. H., & Boudreau, J. W. (2016). An evidence-based review of HR Analytics. The International Journal of Human Resource Management, 28(1), 3-26. doi:10.1080/09585192.2016.1244699Marler, J. H., & Fisher, S. L. (2013). An evidence-based review of e-HRM and strategic human resource management. Human Resource Management Review, 23(1), 18-36. doi:10.1016/j.hrmr.2012.06.002Masum, A. K. M., Kabir, M. J., & Chowdhury, M. M. (2015). Determinants that Influencing the Adoption of E-HRM: An Empirical Study on Bangladesh. Asian Social Science, 11(21). doi:10.5539/ass.v11n21p117McIver, D., Lengnick-Hall, M. L., & Lengnick-Hall, C. A. (2018). A strategic approach to workforce analytics: Integrating science and agility. Business Horizons, 61(3), 397-407. doi:10.1016/j.bushor.2018.01.005Snaith, B., Hardy, M., & Walker, A. (2011). Emergency ultrasound in the prehospital setting: the impact of environment on examination outcomes. Emergency Medicine Journal, 28(12), 1063-1065. doi:10.1136/emj.2010.096966Nagendra, A., & Deshpande, M. (2014). Human Resource Information Systems (HRIS) in HR Planning and Development in Mid to Large Sized Organizations. Procedia - Social and Behavioral Sciences, 133, 61-67. doi:10.1016/j.sbspro.2014.04.169Allumi Nura, A., & Hasni Osman, N. (2013). Gauging the Effect of Performance Management and Technology Based Human Resource Management on Employee Retention: The Perspective of Academics in Higher Educational Institutions in Sokoto State Nigeria. Asian Social Science, 9(15). doi:10.5539/ass.v9n15p295Obeidat, S. M. (2016). The link between e-HRM use and HRM effectiveness: an empirical study. Personnel Review, 45(6), 1281-1301. doi:10.1108/pr-04-2015-0111Oliveira, T., & Martins, M. F. (2010). Understanding e‐business adoption across industries in European countries. Industrial Management & Data Systems, 110(9), 1337-1354. doi:10.1108/02635571011087428Ostermann, H., Staudinger, B., & Staudinger, R. (2009). Benchmarking Human Resource Information Systems. Encyclopedia of Human Resources Information Systems, 92-101. doi:10.4018/978-1-59904-883-3.ch014Paauwe, J. (2009). HRM and Performance: Achievements, Methodological Issues and Prospects. Journal of Management Studies, 46(1), 129-142. doi:10.1111/j.1467-6486.2008.00809.xPark, S. C., & Ryoo, S. Y. (2013). An empirical investigation of end-users’ switching toward cloud computing: A two factor theory perspective. Computers in Human Behavior, 29(1), 160-170. doi:10.1016/j.chb.2012.07.032Patre, S. (2016). Six Thinking Hats Approach to HR Analytics. South Asian Journal of Human Resources Management, 3(2), 191-199. doi:10.1177/2322093716678316Rogers, E. M. (1995). Diffusion of innovations. Macmillan Publishing Co.Schoeneberg, K.-P. (2011). Kritische Erfolgsfaktoren von IT-Projekten: Eine empirische Analyse von ERP-Implementierungen am Beispiel der Mineralölbranche.Snell, S. A. (1995). Managing the impact of information technology on human resource management. In G. Ferris, S. Rosen, & D. T. Barnum (Eds.), Handbook of human resource management (pp. 159–174). Blackwell Human Resource Management.Stone, D. L., Deadrick, D. L., Lukaszewski, K. M., & Johnson, R. (2015). The influence of technology on the future of human resource management. Human Resource Management Review, 25(2), 216-231. doi:10.1016/j.hrmr.2015.01.002Stone, D. L., & Dulebohn, J. H. (2013). Emerging issues in theory and research on electronic human resource management (eHRM). Human Resource Management Review, 23(1), 1-5. doi:10.1016/j.hrmr.2012.06.001Stone-Romero, E. F., Stone, D. L., & Salas, E. (2003). The Influence of Culture on Role Conceptions and Role Behavior in Organisations. Applied Psychology, 52(3), 328-362. doi:10.1111/1464-0597.00139Strohmeier, S. (2007). Research in e-HRM: Review and implications. Human Resource Management Review, 17(1), 19-37. doi:10.1016/j.hrmr.2006.11.002Strohmeier, S., & Piazza, F. (2013). Domain driven data mining in human resource management: A review of current research. Expert Systems with Applications, 40(7), 2410-2420. doi:10.1016/j.eswa.2012.10.059Ulrich, D., & Dulebohn, J. H. (2015). Are we there yet? What’s next for HR? Human Resource Management Review, 25(2), 188-204. doi:10.1016/j.hrmr.2015.01.004Van den Heuvel, S., & Bondarouk, T. (2017). The rise (and fall?) of HR analytics. Journal of Organizational Effectiveness: People and Performance, 4(2), 157-178. doi:10.1108/joepp-03-2017-0022Van Looy, A., & Shafagatova, A. (2016). Business process performance measurement: a structured literature review of indicators, measures and metrics. SpringerPlus, 5(1). doi:10.1186/s40064-016-3498-1Wagner, R. (2018). DSAG Roadmap Webinar “SAP Human Resources.”Zapotocny, M. (2015). Human Resource Information Systems: The current problems and future challenges. In Innovation Vision 2020: From Regional Development Sustainability To Global Economic Growth (pp. 2606–2614).Ziebell, R.-C., Schoeneberg, K.-P., Schultz, M., GarrigĂłs, J. A., & Perello-Marin, M. R. (2018). Vom traditionellen Personalmanagement hin zu e-HRM in der Cloud ImplementierungsansĂ€tze einer digitalen HR-Transformation. Edition HMD, 113-139. doi:10.1007/978-3-658-20967-4_9Ziebell, R.-C., Schultz, M., Albors GarrigĂłs, J., & Schoeneberg, K.-P. (2016). HR-Cloud-Transformation – Vorgehen und Erfolgsfaktoren. HMD Praxis der Wirtschaftsinformatik, 53(6), 802-814. doi:10.1365/s40702-016-0251-

    Zur Methodologie der technologischen Forschung in der Betriebswirtschaftslehre

    Full text link
    In den letzten Jahren ist wieder der Ruf nach mehr Praxisrelevanz der Betriebswirtschafts- bzw. Managementlehre laut geworden. Unter relevanter Forschung wird dabei in der Regel eine Forschung verstanden, die letztlich zu instrumentellem Wissen fĂŒhrt, das in der Unternehmenspraxis einsetzbar ist. Eine solche, auf Entwicklung instrumentellen Wissens ausgerichtete Forschung wird auch als technologische Forschung bezeichnet – im Gegensatz zur theoretischen Forschung. WĂ€hrend es in der theoretischen Forschung um „AufklĂ€rung“ geht, d.h. um ErklĂ€rung von ZusammenhĂ€ngen, geht es bei der technologischen Forschung um „Steuerung“ bzw. „Gestaltung“. Theoretische Aussagen sind Aussagen ĂŒber Ursache-Wirkungs-Beziehungen, technologische Aussagen betreffen dagegen Mittel-Zweck-Beziehungen. In diesem Beitrag wollen wir darlegen, dass theoretische und technologische AussagenzusammenhĂ€nge zwei eigenstĂ€ndige Forschungszweige darstellen und damit die Notwendigkeit erwĂ€chst, eine eigene Methodologie technologischer AussagenzusammenhĂ€nge zu entwerfen. Es sollen Ansatzpunkte aufgezeigt werden, wie eine solche Methodologie technologischer AussagenzusammenhĂ€nge aussehen kann. Dabei wird auch der Frage nach der Wissenschaftlichkeit technologischer Forschung nachzugehen sein
    corecore