118 research outputs found

    Computer and internet interventions to optimize listening and learning for people with hearing loss: accessibility, use, and adherence

    Get PDF
    Purpose: The aim of this research forum article was to examine accessibility, use, and adherence to computerized and online interventions for people with hearing loss. Method: Four intervention studies of people with hearing loss were examined: 2 auditory training studies, 1 working memory training study, and 1 study of multimedia educational support. Results: A small proportion (approximately 15%) of participants had never used a computer, which may be a barrier to the accessibility of computer and Internet based interventions. Computer competence was not a factor in intervention use or adherence. Computer skills and Internet access influenced participant preference for the delivery method of the multimedia educational support program. Conclusions: It is important to be aware of current barriers to computer and Internet-delivered interventions for people with hearing loss. However, there is a clear need to develop and future-proof hearing-related applications for online delivery

    Acoustic cloak based on Bézier scatterers

    Full text link
    [EN] Among the different approaches proposed to design acoustic cloaks, the one consisting on the use of an optimum distribution of discrete scatters surrounding the concealing object has been successfully tested. The feasibility of acoustic cloaks mainly depends on the number and shape of the scatterers surrounding the object to be cloaked. This work presents a method allowing the reduction of the number of discrete scatterers by optimizing their external shape, which is here defined by a combination of cubic Bézier curves. Based on scattering cancellation, a two-dimensional directional cloak consisting of just 20 Bézier scatters has been designed, fabricated and experimentally characterized. The method of fundamental solutions has been implemented to calculate the interaction of an incident plane wave with scatterers of arbitrary shape. The acoustic cloak here proposed shows a performance, in terms of averaged visibility, similar to that consisting of 120 scatterers with equal circular cross sections. The operational frequency of the proposed cloak is 5940 Hz with a bandwidth of about 110 Hz.J. Sanchez-Dehesa acknowledges the financial support by the Spanish Ministerio de Economia y Competitividad and the European Union Fondo Europeo para el Desarrollo Regional (FEDER) under Grant with Ref. TEC2014-53088-C3-1-R. Lu Zhimiao acknowledges the financial support from the program of China Scholarships Council (No. 201503170282), Wen Jihong, Cai Li and Lu Zhimiao acknowledge the support by National Natural Science Foundation of China (Grant Nos 51275519 and 11372346)Lu, Z.; Sanchis Martínez, L.; Wen, J.; Cai, L.; Bi, Y.; Sánchez-Dehesa Moreno-Cid, J. (2018). Acoustic cloak based on Bézier scatterers. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-30888-7S8Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9(3), 45 (2007).Cai, L.-W. & Sánchez-Dehesa Analysis of Cummer–Schurig acoustic cloaking. J. New J. Phys. 9(12), 450 (2007).Chen, H. & Chan, C. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91(18), 183518 (2007).Norris, A. N. Acoustic cloaking theory. Proc. R. Soc. A 464(2097), 2411–2434 (2008).Torrent, D. & Sánchez-Dehesa, J. Acoustic cloaking in two dimensions: a feasible approach. New J. Phys. 10(6), 063015 (2008).Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 Jan (2011).Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 Jun (2011).Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Design and measurements of a broadband two-dimensional acoustic lens. Nat. Mat 13, 352 (2014).Kan, W. et al. Broadband acoustic cloaking within an arbitrary hard cavity. Phys. Rev. Applied 3, 064019 Jun (2015).Scandrett, C. L., Boisvert, J. E. & Howarth, T. R. Acoustic cloaking using layered pentamode materials. J. Acoust. Soc. Am. 127(5), 2856–2864 (2010).Chen, Y. et al. Broadband solid cloak for underwater acoustics. Phys. Rev. B 95, 180104 May (2017).Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72(1), 016623 (2005).Guild, M. D., Alu, A. & Haberman, M. R. Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129(3), 1355–1365 (2011).García-Chocano, V. M. et al. Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 99(7), 074102 (2011).Sanchis, L. et al. Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Phys. Rev. Lett. 110, 124301 Mar (2013).Andkjær, J. & Sigmund, O. Topology optimized for Airborne sound. ASME J. Vib. Acoust. 135(2), 041011 (2013).Guild, M. D. Acoustic Cloaking of Spherical Objects Unsing Thin Elastic Coatings. Univ. of Texas at Austin (2012).Guild, M. D., Haberman, M. R. & Alú, A. Plasmonic-type Acoustic cloak made of a bilaminate shell. Phys. Rev. B 86(10), 104302 (2012).Rohde, C. A. et al. Experimental demonstration of underwater acoustic scattering cancellation. Sci. Rep. 5, 13175 (2015).Popa, B.-I. & Cummer, S. A. Cloaking with optimized homogeneous anisotropic layers. Phys. Rev. A 79, 023806 Feb (2009).Urzhumov, Y., Landy, N., Driscoll, T., Basov, D. & Smith, D. R. Thin low-loss dielectric coatings for freespace cloaking. Opt. Lett. 38(10), 1606–1608 (2013).Andkjaer, J. & Sigmund, O. Topology optimized low-contrast all-dielectric optical cloak. Appl. Phys. Lett. 98(2), 021112 (2011).Climente, A., Torrent, D. & Sánchez-Dehesa, J. Sound focusing by gradient index sonic lenses. Applied Physics Letters 97(10), 104103 (2010).Håkansson, A., Sánchez-Dehesa, J. & Sanchis, L. Acoustic lens design by genetic algorithms Phys. Rev. B 70, 214302 Dec (2004).Håkansson, A., Cervera, F. & Sánchez-Dehesa, J. Sound focusing by flat acoustic lenses without negative refraction. Applied Physics Letters 86(5), 054102 (2005).Li, D., Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Design of an acoustic metamaterial lens using genetic algorithms. The Journal of the Acoustical Society of America 132(4), 2823–2833 (2012).Prautzsch, H., Wolfgang Boehm, W. & Paluszny, M. Bézier and B-Spline Techniques. Springer Science & Business Media (2002).Andersen, P. R., Cutanda-Henríquez, V., Aage, N. & Sánchez-Dehesa, J. Viscothermal effects on an acoustic cloak based on scattering cancellation. Proceedings of the 6th International Conference on Noise and Vibration Emerging methods (NOVEM 2018 ), 171971, June (2018).Golberg, D. Genetic Algorithms in Search, Optimization and Learning. Addison Wesley, Reading, MA (1989).Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220(4598), 671–680 (1983).Sanchis, L., Cryan, M. J., Pozo, J., Craddock, I. J. & Rarity, J. G. Ultrahigh Purcell factor in photonic crystal slab microcavities Phys. Rev. B 76, 045118 Jul (2007).Karageorghis, A. & Fairweather, G. J. The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems. J. Acoust. Soc. Am. 104(6), 3212–3218 (1998).Fairweather, G., Karageorghis, A. & Martin, P. The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements 27(7), 759–769 (2003).Seybert, A. F., Soenarko, B., Rizzo, F. J. & Shippy, D. J. A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions. J. Acoust. Soc. Am. 80(4), 1241–1247 (1986)

    Evolutionary tradeoffs in cellular composition across diverse bacteria

    Get PDF
    One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components

    Rise and demise of the global silver standard

    Get PDF
    In the early modern period, the world economy gravitated around the expansion of long-distance commerce. Together with navigation improvements, silver was the prime commodity which moved the sails of such trade. The disparate availability and the particular demand for silver across the globe determined the participation of producers, consumers, and intermediaries in a growing global economy. American endowments of silver are a known feature of this process; however, the fact that the supply of silver was in the form of specie is a less known aspect of the integration of the global economy. This chapter surveys the production and export of silver specie out of Spanish America, its intermediation by Europeans, and the reexport to Asia. It describes how the sheer volume produced and the quality and consistency of the coin provided familiarity with, and reliability to, the Spanish American peso which made it current in most world markets. By the eighteenth century, it has become a currency standard for the international economy which grew together with the production and coinage of silver. Implications varied according to the institutional settings to deal with specie and foreign exchange in each intervening economy of that trade. Generalized warfare in late eighteenth-century Europe brought down governance in Spanish America and coinage fragmented along with the political fragmentation of the empire. The emergence of new sovereign republics and the end of minting as known meant the cessation of the silver standard that had contributed to the early modern globalization

    Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life.</p> <p>Results</p> <p>To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites.</p> <p>Conclusions</p> <p>These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.</p

    Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes

    Get PDF
    Nidoviruses with large genomes (26.3–31.7 kb; ‘large nidoviruses’), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7–15.7 kb; ‘small nidoviruses’). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3′-5′exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60–80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3′-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3′-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2′-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that – in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses

    Clamp loader ATPases and the evolution of DNA replication machinery

    Get PDF
    Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life
    • …
    corecore