2,284 research outputs found

    Superconductivity in a Molecular Metal Cluster Compound

    Get PDF
    Compelling evidence for band-type conductivity and even bulk superconductivity below T_c8T\_{\text{c}}\approx 8 K has been found in 69,71^{69,71}Ga-NMR experiments in crystalline ordered, giant Ga_84\_{84} cluster-compounds. This material appears to represent the first realization of a theoretical model proposed by Friedel in 1992 for superconductivity in ordered arrays of weakly coupled, identical metal nanoparticles.Comment: 5 pages, 4 figure

    Muon Spin Relaxation Studies of Superconductivity in a Crystalline Array of Weakly Coupled Metal Nanoparticles

    Get PDF
    We report Muon Spin Relaxation studies in weak transverse fields of the superconductivity in the metal cluster compound, Ga_84\_{84}[N(SiMe_3\_{3})_2\_{2}]_20\_{20}-Li_6\_{6}Br_2\_{2}(thf)_20\_{20}\cdot 2toluene. The temperature and field dependence of the muon spin relaxation rate and Knight shift clearly evidence type II bulk superconductivity below T_c7.8T\_{\text{c}}\approx7.8 K, with B_c10.06B\_{\text{c1}}\approx 0.06 T, B_c20.26B\_{\text{c2}}\approx 0.26 T, κ2\kappa\sim 2 and weak flux pinning. The data are well described by the s-wave BCS model with weak electron-phonon coupling in the clean limit. A qualitative explanation for the conduction mechanism in this novel type of narrow band superconductor is presented.Comment: 4 figures, 5 page

    Combined use of empirical data and mathematical modelling to better estimate the microbial turnover of isotopically labelled carbon substrates in soil

    Get PDF
    The flow of carbon (C) through soil is inherently complex due to the many thousands of different chemical transformations occurring simultaneously within the soil microbial community. The accurate modelling of this C flow therefore represents a major challenge. In response to this, isotopic tracers (e.g. 13C, 14C) are commonly used to experimentally parameterise models describing the fate and residence time of individual C compounds within soil. In this study, we critically evaluated the combined use of experimental 14C labelling and mathematical modelling to estimate C turnover times in soil. We applied 14C-labelled alanine and glucose to an agricultural soil and simultaneously measured their loss from soil solution alongside the rate of microbial C immobilization and mineralization. Our results revealed that chloroform fumigation-extraction (CFE) cannot be used to reliably quantify the amount of isotopically labelled 13C/14C immobilised by the microbial biomass. This is due to uncertainty in the extraction efficiency values (kec) within the CFE methodology which are both substrate and incubation time dependent. Further, the traditional mineralization approach (i.e. measuring 14/13CO2 evolution) provided a poor estimate of substrate loss from soil solution and mainly reflected rates of internal microbial C metabolism after substrate uptake from the soil. Therefore, while isotope addition provides a simple mechanism for labelling the microbial biomass it provides limited information on the behaviour of the substrate itself. We used our experimental data to construct a new empirical model to describe the simultaneous flow of substrate-C between key C pools in soil. This model provided a superior estimate of microbial substrate use and microbial respiration flux in comparison to traditional first order kinetic modelling approaches. We also identify a range of fundamental problems associated with the modelling of isotopic-C in soil, including issues with variation in C partitioning within the community, model pool connectivity and variation in isotopic pool dilution, which make interpretation of any C isotopic flux data difficult. We conclude that while convenient, the use of isotopic data (13C, 14C, 15N) has many potential pitfalls necessitating a critical evaluation of both past and future studies

    Tidal signals in ocean-bottom magnetic measurements of the Northwestern Pacific: observation versus prediction

    Get PDF
    Motional induction in the ocean by tides has long been observed by both land and satellite measurements of magnetic fields. While these signals are weak (∼10 nT) when compared to the main magnetic field, their persistent nature makes them important for consideration during geomagnetic field modelling. Previous studies have reported several discrepancies between observations and numerical predictions of the tidal magnetic signals and those studies were inconclusive of the source of the error. We address this issue by (1) analysing magnetometer data from ocean-bottom stations, where the low-noise and high-signal environment is most suitable for detecting the weak tidal magnetic signals, (2) by numerically predicting the magnetic field with a spatial resolution that is 16times higher than the previous studies and (3) by using four different models of upper-mantle conductivity. We use vector magnetic data from six ocean-bottom electromagnetic (OBEM) stations located in the Northwestern Pacific Ocean. The OBEM tidal amplitudes were derived using an iteratively re-weighted least-squares (IRLS) method and by limiting the analysis of lunar semidiurnal (M2), lunar elliptic semidinurnal (N2) and diurnal (O1) tidal modes to the night-time. Using a 3-D electromagnetic induction solver and the TPX07.2 tidal model, we predict the tidal magnetic signal. We use earth models with non-uniform oceans and four 1-D mantle sections underneath taken from Kuvshinov and Olsen, Shimizu etal. and Baba etal. to compare the effect of upper-mantle conductivity. We find that in general, the predictions and observations match within 10-70 per cent across all the stations for each of the tidal modes. The median normalized percent difference (NPD) between observed and predicted amplitudes for the tidal modes M2, N2 and O1 were 15 per cent, 47 per cent and 98 per cent, respectively, for all the stations and models. At the majority of stations, and for each of the tidal modes, the higher resolution (0.25°×0.25°) modelling gave amplitudes consistently closer to the observations than the lower resolution (1°×1°) modelling. The difference in lithospheric resistance east and west of the Izu-Bonin trench system seems to be affecting the model response and observations in the O1 tidal mode. This response is not seen in the M2 and N2 modes, thereby indicating that the O1 mode is more sensitive to lithospheric resistanc

    Coupled root water and solute uptake - a functional structural model

    Get PDF
    Understanding the distribution and fate of solutes in the soil-plant continuum is of interest for regulatory authorities, customers and producers. For example pesticide legalization requires certain modelling and experimental studies before the substance can be released on the market. The modelling approach used in these procedures, however, does not hold detailed information about the fate of the solute in the plant root system, but treats the root system only as a linear sink term. Uptake is determined as fraction of transpiration of the concentration in the dissolved phase. With an increasing availability of more detailed modelling approaches within the last years, we focus on a more comprehensive description of pesticide uptake by plant roots. R-SWMS is a three dimensional model for water movement in soil and plant roots (1). It also includes solute transport within the roots, which is realized as a particle tracking algorithm (2). We coupled this model to Partrace, another particle tracking algorithm that solves the convection-dispersion-equation in the soil. Active or passive solute transport across the root membrane is possible. While active transport, namely Michaelis-Menten kinetics, requires energy input from the plant, passive transport can be either driven by advective water uptake and/or by the local concentration gradient between root and soil. Root membrane conductance is determined by the lipophilic properties of the solute. Within the root system solutes are transported via the advective water flux. We further implemented microbial decay and sorption to both soil and roots. Benchmarking the coupled 3D model with an analytical solution for a single root at steady state flow conditions showed a good agreement. Using this new approach we could derive global uptake parameters in silico and compare the simulation results to data from hydroponic experiments. The detailed modelling approach enables tracking solutes in time, space and phase within the soil and root system. This novel simulation tool can be used to investigate the influence of soil properties, root system architectures, solute properties, meteorological conditions as well as plant management strategies on plant solute uptake to gain a deeper understanding of solute uptake and transport parameters

    KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models - II: Model description, implementation and testing

    Get PDF
    New knowledge on soil structure highlights its importance for hydrology and soil organic matter (SOM) stabilization, which however remains neglected in many wide used models. We present here a new model, KEYLINK, in which soil structure is integrated with the existing concepts on SOM pools, and elements from food web models, that is, those from direct trophic interactions among soil organisms. KEYLINK is, therefore, an attempt to integrate soil functional diversity and food webs in predictions of soil carbon (C) and soil water balances. We present a selection of equations that can be used for most models as well as basic parameter intervals, for example, key pools, functional groups' biomasses and growth rates. Parameter distributions can be determined with Bayesian calibration, and here an example is presented for food web growth rate parameters for a pine forest in Belgium. We show how these added equations can improve the functioning of the model in describing known phenomena. For this, five test cases are given as simulation examples: changing the input litter quality (recalcitrance and carbon to nitrogen ratio), excluding predators, increasing pH and changing initial soil porosity. These results overall show how KEYLINK is able to simulate the known effects of these parameters and can simulate the linked effects of biopore formation, hydrology and aggregation on soil functioning. Furthermore, the results show an important trophic cascade effect of predation on the complete C cycle with repercussions on the soil structure as ecosystem engineers are predated, and on SOM turnover when predation on fungivore and bacterivore populations are reduced. In summary, KEYLINK shows how soil functional diversity and trophic organization and their role in C and water cycling in soils should be considered in order to improve our predictions on C sequestration and C emissions from soils. © 2021 PeerJ Inc.. All rights reserved.The following grant information was disclosed by the authors: COST (European Cooperation in Science and Technology): FP1305 (BioLink) and ES1406 (KEYSOM). Short Term Scientific Mission (STSM) programs. Spanish Ministry of Science, Innovation and Universities. Spanish Ministry of Economy and Competitiveness (MINECO): IBERYCA (CGL2017-84723-P). BC3 María de Maeztu Excellence Accreditation: MDM-2017-0714. Basque Government: BERC 2018-2021. This article is based upon work from COST Actions FP1305 (BioLink) and ES1406 (KEYSOM), supported by COST (European Cooperation in Science and Technology), and their Short Term Scientific Mission (STSM) programs. Omar Flores’ work was funded by FPU PhD grant program of the Spanish Ministry of Science, Innovation and Universities. Jorge Curiel Yuste received funding from the Spanish Ministry of Economy and Competitiveness (MINECO) under projects IBERYCA (CGL2017-84723-P) and the BC3 María de Maeztu excellence accreditation (MDM-2017-0714). Jorge Curiel Yuste also received funding from the Basque Government through the BERC 2018-2021 program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Response of the Gypsy Moth, Lymantria dispar to Transgenic Poplar, Populus simonii x P. nigra, Expressing Fusion Protein Gene of the Spider Insecticidal Peptide and Bt-toxin C-peptide

    Get PDF
    The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω?-ACTX-Ar1 sequence coding for an ω?-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual performance, feeding selection, midgut proteinase activity and nutrition utilization were monitored. The growth and development of L. dispar were significantly affected by continually feeding on the transgenic poplar, with the larval instars displaying significantly shorter developmental times than those fed on nontransgenic poplar, but pupation was delayed. Mortality was higher in populations fed transgenic poplar leaves, than for larvae fed nontransgenic poplar leaves. The cumulative mortality during all stages of larvae fed transgenic leaves was 92% compared to 16.7% of larvae on nontransgenic leaves. The highest mortality observed was 71.7% in the last larval instar stage. A two-choice test showed that fifth-instar larvae preferred to feed on nontransgenic leaves at a ratio of 1:1.4. Feeding on transgenic leaves had highly significant negative effects on relative growth of larvae, and the efficiency of conversion of ingested and digested food. Activity of major midgut proteinases was measured using substrates TAME and BTEE showed significant increases in tryptase and chymotrypsinlike activity (9.2- and 9.0-fold, respectively) in fifth-instar larvae fed on transgenic leaves over control. These results suggest transgenic poplar is resistant to L. dispar, and the mature L. dispar may be weakened by the transgenic plants due to Bt protoxins activated by elevated major midgut proteinase activity. The new transgenic poplar expressing fusion protein genes of Bt and a new spider insecticidal peptide are good candidates for managing gypsy moth

    In vitro template-change PCR to create single crossover libraries: a case study with B. thuringiensis Cry2A toxins

    Get PDF
    During evolution the creation of single crossover chimeras between duplicated paralogous genes is a known process for increasing diversity. Comparing the properties of homologously recombined chimeras with one or two crossovers is also an efficient strategy for analyzing relationships between sequence variation and function. However, no well-developed in vitro method has been established to create single-crossover libraries. Here we present an in vitro template-change polymerase change reaction that has been developed to enable the production of such libraries. We applied the method to two closely related toxin genes from B. thuringiensis and created chimeras with differing properties that can help us understand how these toxins are able to differentiate between insect species

    Boron Phosphide Films by Reactive Sputtering Searching for a P Type Transparent Conductor

    Get PDF
    With an indirect band gap in the visible and a direct band gap at a much higher energy, boron phosphide BP holds promise as an unconventional p type transparent conductor. This work reports on reactive sputtering of amorphous BP films, their partial crystallization in a P containing annealing atmosphere, and extrinsic doping by C and Si. The highest hole concentration to date for p type BP 5 1020 cm amp; 8722;3 is achieved using C doping under B rich conditions. Furthermore, bipolar doping is confirmed to be feasible in BP. An anneal temperature of at least 1000 C is necessary for crystallization and dopant activation. Hole mobilities are low and indirect optical transitions are stronger than that predicted by theory. Low crystalline quality probably plays a role in both cases. High figures of merit for transparent conductors might be achievable in extrinsically doped BP films with improved crystalline qualit
    corecore