199 research outputs found

    Recipes for Life with Heat during Ramzan

    Get PDF
    The holy month of Ramzan (also spelled Ramadan) is a medium for Muslims around the world to rejuvenate their piety to the Creator. Each year, somewhere in the world, the month of Ramzan coincides with a period of seasonal or unseasonal heat. Against the backdrop of rising global temperatures, this collection asks: how do people and institutions manage the heat of Ramzan while fasting? This multilingual collection examines the gendered relationship between consumption, mobility and piety during Ramzan. The collection brings together participant observation and social analysis, with an archive of found materials from print and online media

    Evidence of ΄(1S)→J/ψ+χc1\Upsilon(1S) \to J/\psi+\chi_{c1} and search for double-charmonium production in ΄(1S)\Upsilon(1S) and ΄(2S)\Upsilon(2S) decays

    Full text link
    Using data samples of 102×106102\times10^6 ΄(1S)\Upsilon(1S) and 158×106158\times10^6 ΄(2S)\Upsilon(2S) events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays ΄(1S,2S)→J/ψ(ψâ€Č)+X\Upsilon(1S,2S)\rightarrow J/\psi(\psi')+X, where X=ηcX=\eta_c, χcJ(J= 0, 1, 2)\chi_{cJ} (J=~0,~1,~2), ηc(2S)\eta_c(2S), X(3940)X(3940), and X(4160)X(4160). No significant signal is observed in the spectra of the mass recoiling against the reconstructed J/ψJ/\psi or ψâ€Č\psi' except for the evidence of χc1\chi_{c1} production with a significance of 4.6σ4.6\sigma for ΄(1S)→J/ψ+χc1\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}. The measured branching fraction \BR(\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}) is (3.90±1.21(stat.)±0.23(syst.))×10−6(3.90\pm1.21(\rm stat.)\pm0.23 (\rm syst.))\times10^{-6}. The 90%90\% confidence level upper limits on the branching fractions of the other modes having a significance of less than 3σ3\sigma are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.Comment: 12 pages, 4 figures, 1 table. The fit range was extended to include X(4160) signal according to referee's suggestions. Other results unchanged. Paper was accepted for publication as a regular article in Physical Review

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Insights on multiple myeloma treatment strategies

    Get PDF
    The introduction of new agents and management strategies over the past decade has resulted in a major step change in treatment outcomes with deepening responses and increased survival for patients with multiple myeloma. In daily clinical practice, healthcare professionals are now faced with challenges including, optimal treatment sequencing and changing treatment goals. In light of this, a group of experts met to discuss diagnostic and treatment guidelines, examine current clinical practice, and consider how new clinical trial data may be integrated into the management of multiple myeloma in the future

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Co-infection by human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1): does immune activation lead to a faster progression to AIDS?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent data have shown that HTLV-1 is prevalent among HIV positive patients in Mozambique, although the impact of HTLV-1 infection on HIV disease progression remains controversial. Our aim was to determine the phenotypic profile of T lymphocytes subsets among Mozambican patients co-infected by HIV and HTLV-1.</p> <p>Methods</p> <p>We enrolled 29 patients co-infected by HTLV-1 and HIV (co-infected), 59 patients mono-infected by HIV (HIV) and 16 healthy controls (HC), respectively.</p> <p>For phenotypic analysis, cells were stained with the following fluorochrome-labeled anti-human monoclonal antibodies CD4-APC, CD8-PerCP, CD25-PE, CD62L-FITC, CD45RA-FITC. CD45RO-PE, CD38-PE; being analysed by four-colour flow cytometry.</p> <p>Results</p> <p>We initially found that CD4<sup>+ </sup>T cell counts were significantly higher in co-infected, as compared to HIV groups. Moreover, CD4<sup>+ </sup>T Lymphocytes from co-infected patients presented significantly higher levels of CD45RO and CD25, but lower levels of CD45RA and CD62L, strongly indicating that CD4<sup>+ </sup>T cells are more activated under HTLV-1 plus HIV co-infection.</p> <p>Conclusion</p> <p>Our data indicate that HTLV-1/HIV co-infected patients progress with higher CD4<sup>+ </sup>T cell counts and higher levels of activation markers. In this context, it is conceivable that in co-infected individuals, these higher levels of activation may account for a faster progression to AIDS.</p

    Trends in Prevalence of Advanced HIV Disease at Antiretroviral Therapy Enrollment - 10 Countries, 2004-2015.

    Get PDF
    Monitoring prevalence of advanced human immunodeficiency virus (HIV) disease (i.e., CD4+ T-cell count <200 cells/ÎŒL) among persons starting antiretroviral therapy (ART) is important to understand ART program outcomes, inform HIV prevention strategy, and forecast need for adjunctive therapies.*,†,§ To assess trends in prevalence of advanced disease at ART initiation in 10 high-burden countries during 2004-2015, records of 694,138 ART enrollees aged ≄15 years from 797 ART facilities were analyzed. Availability of national electronic medical record systems allowed up-to-date evaluation of trends in Haiti (2004-2015), Mozambique (2004-2014), and Namibia (2004-2012), where prevalence of advanced disease at ART initiation declined from 75% to 34% (p<0.001), 73% to 37% (p<0.001), and 80% to 41% (p<0.001), respectively. Significant declines in prevalence of advanced disease during 2004-2011 were observed in Nigeria, Swaziland, Uganda, Vietnam, and Zimbabwe. The encouraging declines in prevalence of advanced disease at ART enrollment are likely due to scale-up of testing and treatment services and ART-eligibility guidelines encouraging earlier ART initiation. However, in 2015, approximately a third of new ART patients still initiated ART with advanced HIV disease. To reduce prevalence of advanced disease at ART initiation, adoption of World Health Organization (WHO)-recommended "treat-all" guidelines and strategies to facilitate earlier HIV testing and treatment are needed to reduce HIV-related mortality and HIV incidence
    • 

    corecore