6,064 research outputs found
Is General Relativity a simpler theory?
Gravity is understood as a geometrization of spacetime. But spacetime is also
the manifold of the boundary values of the spinless point particle in a
variational approach. Since all known matter, baryons, leptons and gauge bosons
are spinning objects, it means that the manifold, which we call the kinematical
space, where we play the game of the variational formalism of an elementary
particle is greater than spacetime. This manifold for any mechanical system is
a Finsler metric space such that the variational formalism can always be
interpreted as a geodesic problem on this space. This manifold is just the flat
Minkowski space for the free spinless particle. Any interaction modifies its
flat Finsler metric as gravitation does. The same thing happens for the
spinning objects but now the Finsler metric space has more dimensions and its
metric is modified by any interaction, so that to reduce gravity to the
modification only of the spacetime metric is to make a simpler theory, the
gravitational theory of spinless matter. Even the usual assumption that the
modification of the metric only involves dependence of the metric coefficients
on the spacetime variables is also a restriction because in general these
coefficients are dependent on the velocities. In the spirit of unification of
all forces, gravity cannot produce, in principle, a different and simpler
geometrization than any other interaction.Comment: 10 pages 1 figure, several Finsler metric examples and a conclusion
section added. Minor correction
Phase-coexisting patterns, horizontal segregation and controlled convection in vertically vibrated binary granular mixtures
We report new patterns, consisting of coexistence of sub-harmonic/harmonic
and asynchronous states [for example, a granular gas co-existing with (i)
bouncing bed, (ii) undulatory subharmonic waves and (iii) Leidenfrost-like
state], in experiments on vertically vibrated binary granular mixtures in a
Heleshaw-type cell. Most experiments have been carried out with equimolar
binary mixtures of glass and steel balls of same diameter by varying the total
layer-height () for a range of shaking acceleration (). All patterns
as well as the related phase-diagram in the ()-plane have been
reproduced via molecular dynamics simulations of the same system. The
segregation of heavier and lighter particles along the horizontal direction is
shown to be the progenitor of such phase-coexisting patterns as confirmed in
both experiment and simulation. At strong shaking we uncover a {\it partial}
convection state in which a pair of convection rolls is found to coexist with a
Leidenfrost-like state. The crucial role of the relative number density of two
species on controlling the buoyancy-driven granular convection is demonstrated.
A possible model for spontaneous horizontal segregation is suggested based on
anisotropic diffusion
Do European Stock Markets Affect Latin American Stock Markets?
In this study, we examine the response of Latin American stock markets to movements in European stock markets using VAR models. Our results vary depending on the openness of the country in terms of international trade. We find evidence that Latin American stock markets are responsive to changes in the stock market from Spain. Additionally, during the second and third subperiods, Spain has much stronger ties with Brazil, and this might explain why Brazil responds more to the shocks originating from Spain than from France. In conclusion, this study uncovers two important findings. First, Spain influences Latin American markets but these responses are not homogeneous across markets. Second, the influence of Spain has different magnitude in the three subperiods.Emerging Markets, Latin America, Stock Markets Interdependence, VAR
Generalized Schrieffer-Wolff Formalism for Dissipative Systems
We present a formalized perturbation theory for Markovian open systems in the
language of a generalized Schrieffer-Wolff (SW) transformation. A non-unitary
rotation decouples the unper- turbed steady states from all fast degrees of
freedom, in order to obtain an effective Liouvillian, that reproduces the exact
low excitation spectrum of the system. The transformation is derived in a
constructive way, yielding a perturbative expansion of the effective Liouville
operator. The presented formalism realizes an adiabatic elimination of fast
degrees of freedom to arbitrary orders in the perturbation. We exemplarily
employ the SW formalism to two generic open systems and discuss general
properties of the different orders of the perturbation.Comment: 11 pages, 1 figur
The Bose–Hubbard model with squeezed dissipation
The stationary properties of the Bose–Hubbard model under squeezed dissipation are investigated. The dissipative model does not possess aU (1) symmetry but conserves parity. We find that 〈a j 〉 = 0 always holds, so no symmetry breaking occurs. Without the onsite repulsion, the linear case is known to be critical. At the critical point the system freezes to an EPR state with infinite two mode entanglement. We show here that the correlations are rapidly destroyed whenever the repulsion is switched on. As we increase the latter, the system approaches a thermal state with an effective temperature defined in terms of the squeezing parameter in the dissipators. We characterize this transition by means of a Gutzwiller ansatz and the Gaussian Hartree–Fock–Bogoliubov approximation
Power-law decay in first-order relaxation processes
Starting from a simple definition of stationary regime in first-order
relaxation processes, we obtain that experimental results are to be fitted to a
power-law when approaching the stationary limit. On the basis of this result we
propose a graphical representation that allows the discrimination between
power-law and stretched exponential time decays. Examples of fittings of
magnetic, dielectric and simulated relaxation data support the results.Comment: to appear in Phys. Rev. B; 4 figure
Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements
The role of dipolar interactions among Ni nanoparticles (NP) embedded in an
amorphous SiO2/C matrix with different concentrations has been studied
performing ac magnetic susceptibility Chi_ac measurements. For very diluted
samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions,
the data are well described by the Neel-Arrhenius law. Increasing Ni
concentration to values up to 12.8 wt % Ni results in changes in the
Neel-Arrhenius behavior, the dipolar interactions become important, and need to
be considered to describe the magnetic response of the NPs system. We have
found no evidence of a spin-glasslike behavior in our Ni NP systems even when
dipolar interactions are clearly present.Comment: 7 pages, 5 figures, 3 table
Playing with nonuniform grids
Numerical experiments with discretization methods on nonuniform grids are presented for the convection-diffusion equation. These show that the accuracy of the discrete solution is not very well predicted by the local truncation error. The diagonal entries in the discrete coefficient matrix give a better clue: the convective term should not reduce the diagonal. Also, iterative solution of the discrete set of equations is discussed. The same criterion appears to be favourable.
- …