1,615 research outputs found

    Hall response of interacting bosonic atoms in strong gauge fields: from condensed to FQH states

    Get PDF
    Interacting bosonic atoms under strong gauge fields undergo a series of phase transitions that take the cloud from a simple Bose-Einstein condensate all the way to a family of fractional-quantum-Hall-type states [M. Popp, B. Paredes, and J. I. Cirac, Phys. Rev. A 70, 053612 (2004)]. In this work we demonstrate that the Hall response of the atoms can be used to locate the phase transitions and characterize the ground state of the many-body state. Moreover, the same response function reveals within some regions of the parameter space, the structure of the spectrum and the allowed transitions to excited states. We verify numerically these ideas using exact diagonalization for a small number of atoms, and provide an experimental protocol to implement the gauge fields and probe the linear response using a periodically driven optical lattice. Finally, we discuss our theoretical results in relation to recent experiments with condensates in artificial magnetic fields [ L. J. LeBlanc, K. Jimenez-Garcia, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Proc. Natl. Acad. Sci. USA 109, 10811 (2012)] and we analyze the role played by vortex states in the Hall response.Comment: 10 pages, 7 figure

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure

    Shaping an Itinerant Quantum Field by Dissipation

    Get PDF
    We show that inducing sidebands in the emission of a single emitter into a one dimensional waveguide, together with a dissipative re-pumping process, a photon field is cooled down to a squeezed vacuum. Our method does not require to be in the strong coupling regime, works with a continuum of propagating field modes and it may lead to sources of tunable multimode squeezed light in circuit QED systems.Comment: 4 pages, 3 figure

    Pairs of additive forms and Artin's conjecture

    Get PDF
    Resumo nĂŁo disponĂ­ve

    Fragmented superfluid due to frustration of cold atoms in optical lattices

    Full text link
    A one dimensional optical lattice is considered where a second dimension is encoded in the internal states of the atoms giving effective ladder systems. Frustration is introduced by an additional optical lattice that induces tunneling of superposed atomic states. The effects of frustration range from the stabilization of the Mott insulator phase with ferromagnetic order, to the breakdown of superfluidity and the formation of a macroscopically fragmented phase.Comment: New version, more results, about 20 page

    Split Instability of a Vortex in an Attractive Bose-Einstein Condensate

    Full text link
    An attractive Bose-Einstein condensate with a vortex splits into two pieces via the quadrupole dynamical instability, which arises at a weaker strength of interaction than the monopole and the dipole instabilities. The split pieces subsequently unite to restore the original vortex or collapse.Comment: 4 pages, 4 figures, added figures and references, revised tex

    Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose-Einstein condensates with attractive interactions

    Full text link
    The dynamical instabilities and ensuing dynamics of singly- and doubly-quantized vortex states of Bose-Einstein condensates with attractive interactions are investigated using full 3D numerical simulations of the Gross-Pitaevskii equation. With increasing the strength of attractive interactions, a series of dynamical instabilities such as quadrupole, dipole, octupole, and monopole instabilities emerge. The most prominent instability depends on the strength of interactions, the geometry of the trapping potential, and deviations from the axisymmetry due to external perturbations. Singly-quantized vortices split into two clusters and subsequently undergo split-merge cycles in a pancake-shaped trap, whereas the split fragments immediately collapse in a spherical trap. Doubly-quantized vortices are always unstable to disintegration of the vortex core. If we suddenly change the strength of interaction to within a certain range, the vortex splits into three clusters, and one of the clusters collapses after a few split-merge cycles. The vortex split can be observed using a current experimental setup of the MIT group.Comment: 11 pages, 10 figure

    Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics

    Get PDF
    We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions
    • …
    corecore