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Pairs of additive forms and Artin’s conjecture
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1. Introduction. Let (f, g) be the pair of additive forms

(1)
f = a1x

k
1 + . . .+ anx

k
n,

g = b1x
k
1 + . . .+ bnx

k
n

of degree k > 1 with coefficients in the rational integers. We are concerned
with conditions on the number of indeterminates n which guarantees that
(1) is solvable in any p-adic field, i.e., that there exists a common nontrivial
p-adic zero for the pair (f, g). Artin has conjectured that n ≥ 2k2 + 1 can
be such a condition. This conjecture was confirmed by Demyanov in the
case k = 2 (see [D]) and by Davenport and Lewis in the case k = 3 (see
[DL1]). Both also proved that this bound is the best possible in those cases.
Later on, Davenport and Lewis in [DL2] proved that this conjecture is also
true in the case of k odd. For k even they proved that (1) is solvable in
any p-adic field, except maybe for the primes p such that p(p − 1) divides
k, or for p = 5 when 10 divides k (see [DL2], Sections 6–8, and the proof of
Theorem 4). They also remarked that the main obstacles lie in the degrees
of the type k = 2lk0, in these cases they could prove that n ≥ 7k3 variables
would suffice.

Godinho [G2] improved the condition n ≥ 7k3 in the case k = 2l, l ≥ 2:

Theorem 1. If k = 2l, l ≥ 2, then (1) is solvable in the field of p-adic
numbers for any prime p if n ≥ 16k2 − 26k + 1.

In [G3] he proved the following

Theorem 2. Let p be a prime number. If k = (p − 1)pτk0, τ > 0
and (k0, p) = 1, then there exists a solution for (1) in Qp provided that

1991 Mathematics Subject Classification: 11D79, 11D72.
The authors were partially supported by a grant of FAP/DF.
The case of systems of additive forms is treated in a forthcoming paper by J. Brüdern
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n ≥ 2k2+w(τ,p), where

w(τ, p) =
1

log2 p+ (1/τ) log2(p− 1)
.

Notice that when p is large the bound on n gets closer to Artin’s bound.

The purpose of this article is to present a new absolute bound for n which
does not depend on the values of τ and of the prime, and which is closer to
Artin’s conjecture in the remaining cases (i.e. k = (p − 1)pτk0, τ > 0 and
(k0, p) = 1 or k = 5τ2k0, τ ≥ 1).

The main results proved in this paper are:

Theorem A. If k = 2 ·3τk0, where (k0, 3) = 1, τ ≥ 1 and n ≥ 8k2, then
(1) is solvable in the field of 3-adic numbers.

Theorem B. If n ≥ 2k5/2 then (1) is solvable in Qp for every prime p,
provided k 6= 22, 23, 24, 25.

Other interesting aspects of this theory are presented in the paper of
Atkinson and Cook (see [AC]), where it is shown that if n > 4k + 1 then
solvability in Qp is guaranteed for every prime p such that p > k6, showing
that Artin’s conjecture can fail only for small primes. For more information
on the subject we suggest the papers of Atkinson, Brüdern and Cook [ABC],
and Wooley [W], where the case of unequal degree is considered.

2. Preliminary results. The criterion used here to establish that (1)
is solvable in Qp is stated in the next lemma, also due to Davenport and
Lewis. We state it in the way we need:

Lemma 3. Let (f, g) be a pair of forms as in (1), k = (p − 1)pτk0 with
τ ≥ 1 and (k0, p) = 1, and let γ be defined as follows:

γ =
{
τ + 1 if p > 2,
τ + 2 if p = 2.

If the system

f ≡ 0 (mod pγ), g ≡ 0 (mod pγ)

has a solution (x1, . . . , xn) in the rational integers for which the matrix
(
a1x1 . . . anxn
b1x1 . . . bnxn

)

has rank 2 modulo p (i.e. (aibj −ajbi)xixj 6≡ 0 (mod p) for some i, j), then
the pair (f, g) admits a nontrivial common p-adic zero.

P r o o f. See Lemma 7 in [DL2].
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Definition 1. Let (f, g) be a pair of forms as in (1). Any solution for
the congruences

f ≡ 0 (mod pi), g ≡ 0 (mod pi)

for which the matrix (
a1x1 . . . anxn
b1x1 . . . bnxn

)

has rank 2 modulo p, will be called a nonsingular solution (or zero) modulo pi.

Definition 2. If in the pair of forms (f, g), a pair of subforms

a1x
k
1 + . . .+ aµx

k
µ, b1x

k
1 + . . .+ bµx

k
µ

can be found which has a nonsingular zero modulo pi, then we will call this
pair of subforms a nonsingular set of level i and will denote it by NSpi.

With the above definition we can restate Lemma 3 saying that if we can
find an NSpγ set then (1) is solvable in Qp.

Definition 3. Consider the system{
f ≡ 0 (mod pt),
g ≡ 0 (mod pt)

for a fixed power t. Any nontrivial solution for the above system, with some
variable assuming a value which is co-prime to p, will be called a primitive
solution modulo pt for the pair (f, g).

Theorem 4. Let c1, . . . , cm, d1, . . . , dm ∈ Z where at least one in each
pair ci, di is not divisible by p. Let k = pτδk0, (k0, p) = 1, and δ = (p−1, k).
If m ≥ 2δ + 1 then the system

(2)
F = c1x

k
1 + . . .+ cmx

k
m ≡ 0 (mod p),

G = d1x
k
1 + . . .+ dmx

k
m ≡ 0 (mod p)

admits a primitive solution modulo p.

P r o o f. This is Chevalley’s Theorem as described in Lemma 2 in [DL2].

Theorem 5. With the assumptions of Theorem 4, assume further that
every form αF +βG with α, β ∈ Z, (α, β) 6≡ (0, 0) (mod p) contains at least
δ+1 variables with coefficients not divisible by p. Then (2) has a nonsingular
solution modulo p (that is, an NSp set can be formed).

P r o o f. This is Lemma 3 in [DL2].

We now observe that given a pair (f, g) as in (1) we can always write it
in the form

(3)
f = f0 + pf1 + . . .+ psfs,

g = g0 + pg1 + . . .+ psgs,
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where fi, gi are also forms of degree k in the variables xj of (f, g), j =
1, . . . , n, satisfying the following condition: xj is involved in the pair (fj , gj)
if and only if i = min(vp(aj), vp(bj)), where vp denotes the p-adic valuation.

Definition 4. We will refer to the decomposition of a pair described
above in (2) as the canonical decomposition (or form) of (f, g). Moreover for
each i ∈ {0, 1, . . . , s} let mi be the number of variables present in the pair
(fi, gi). If a variable occurs in the pair (fi, gi) then it will be said to be at
level i.

Definition 5. Let

a1x
k
1 + . . .+ aµx

k
µ, b1x

k
1 + . . .+ bµx

k
µ

be a pair of subforms of (f, g), with its variables found among the variables
of the first pairs (f0, g0), . . . , (fj , gj) of the canonical decomposition of (f, g),
and assume they have a common nontrivial zero ~ξ = (ξ1, . . . , ξµ) modulo pi

for some i > j. Multiply ~ξ by a new variable T to have

(a1ξ
k
1 + . . .+ aµξ

k
µ)T k ≡ piαT k (mod pi+1),

(b1ξk1 + . . .+ bµξ
k
µ)T k ≡ piβT k (mod pi+1)

for some α, β ∈ Z. With this procedure a new variable was created at level
i > j or higher, and µ variables were suppressed from the lower levels.
The replacement of (x1, . . . , xµ) by (ξ1T, . . . , ξµT ) is called contraction of µ
variables at level j to a variable at level i or higher.

Remark. Since an NSpi set is a pair of subforms with a nonsingular
zero modulo pi, it makes sense to speak of contracting an NSpi set to a new
variable T at level i or higher, but in this case we are going to assume that
the zero used in the contraction procedure described in Definition 5 is the
nonsingular zero modulo pi, ensured by the definition of an NSpi set.

3. Congruences modulo powers of 3. We will denote by (f̃ , g̃) the
pair of forms obtained from (f, g) after any process of contraction of variables
explained in Definition 5, and will denote by

f̃ = f̃0 + pf̃1 + . . .+ psf̃s, g̃ = g̃0 + pg̃1 + . . .+ psg̃s

the canonical form of the pair (f̃ , g̃) and by m̃i the number of variables
present in the pair (f̃i, g̃i).

In order to determine a bound for the number of new variables obtained
by contraction of the variables of level 0, we decompose again the variables
involved in the pair (f0, g0) of the canonical decomposition of (f, g) into
subsets R1, . . . , Rw according to the ratios modulo 3 of the coefficients ai/bi
of its variables. It is an easy exercise to verify that there are at most 4
different classes modulo 3, i.e., w = 4.
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Lemma 6. A single congruence a1x
k
1 + . . .+ anx

k
n ≡ 0 (mod 3) admits a

primitive solution modulo 3 if n ≥ 3.

P r o o f. If a1 = a2 = a3 then we can choose x1 = x2 = x3 = 1 and
all other variables zero. If not, say a1 = 1, a2 = 2, then we can choose
x1 = 1 = x2 and all other variables zero.

Lemma 7. In the pair of forms (f, g) as in (1) we can effectively create
[r1/3] + . . . + [r4/3] new variables from the variables at level 0, where ri
denotes the cardinality of the set Ri defined above. Moreover ,

[r1/3] + . . .+ [r4/3] ≥ [m0/3]− 2.

P r o o f. In order to prove the first assertion observe that if a1/b1, a2/b2,
a3/b3 are in the same class then

{
a1x

k
1 + a2x

k
2 + a3x

k
3 ≡ 0 (mod 3),

b1x
k
1 + b2x

k
2 + b3x

k
3 ≡ 0 (mod 3)

admits a nontrivial solution modulo 3 if and only if a1x
k
1 + a2x

k
2 + a3x

k
3 ≡ 0

(mod 3) does. But this last condition is true by the above lemma. Hence any
three pairs of coefficients which belong to the same class can be contracted
to a new variable at level 1 or higher. In this way we can then construct
[r1/3] + . . .+ [r4/3] new variables.

Now denote by ti the number [ri/3]. Then for each i there exists si ∈
{0, 1, 2} such that ri = 3ti + si. Then

m0 = (3t1 + s1) + . . .+ (3t4 + s4) = 3(t1 + . . .+ t4) + s1 + . . .+ s4

≤ 3(t1 + . . .+ t4) + 4 · 2 = 3(t1 + . . .+ t4 + 2) + 2.

Hence

[m0/3] ≤ t1 + . . .+ t4 + 2.

The above lemma guarantees that at least [m0/3]− 2 new variables can
be obtained by contraction of the variables at level zero. We now turn to
congruences modulo 32.

Lemma 8. Let (f, g) be a pair of additive forms of degree k = 2 · 3τk0,
with τ ≥ 1, (k0, 3) = 1. Then the system of congruences

{
f = a1x

k
1 + . . .+ anx

k
n ≡ 0 (mod 32),

g = b1x
k
1 + . . .+ bnx

k
n ≡ 0 (mod 32)

admits a primitive solution modulo 32 if n ≥ 21.

P r o o f. Let

f = f0 + 3f1, g = g0 + 3g1

be the canonical decomposition of the pair (f, g). If m1 ≥ 5 (see Definition
4) then by Theorem 4 (δ = 2) there exists a primitive solution modulo 3 for
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the system

f1 ≡ 0 (mod 3), g1 ≡ 0 (mod 3),

hence also a primitive solution modulo 32 for the original system.
So we may assume m1 < 5, and consequently m0 ≥ 17, since m0 +m1 =

n ≥ 21. According to Lemma 7 at least [m0/3] − 2 new variables from the
variables of the pair (f0, g0) can be added at level 1 or higher. If one of these
variables is at a level higher than one, then the solution used to produce
this new variable is already a primitive solution modulo 32. Therefore we
may assume that all new variables coming from contraction are at level 1.
Our goal is to obtain m̃1 ≥ 5 (see introduction of Section 3) because this
will ensure, by Theorem 4, a primitive solution modulo 3 for

f̃1 ≡ 0 (mod 3), g̃1 ≡ 0 (mod 3),

hence also a primitive solution for the original system. And in fact,

m̃1 ≥ m1 + [m0/3]− 2.

Now it is easy to verify that in all cases given by the inequalities

0 ≤ m1 < 5 and m0 ≥ 21−m1

we will have m̃1 ≥ 5.

We now obtain a general condition, i.e., modulo 3t.

Lemma 9. Let (f, g) be a pair of additive forms of degree k = 2 · 3τk0,
with τ ≥ 1, (k0, 3) = 1. Then for any t ≥ 1 the system of congruences

{
f = a1x

k
1 + . . .+ anx

k
n ≡ 0 (mod 3t),

g = b1x
k
1 + . . .+ bnx

k
n ≡ 0 (mod 3t)

admits a primitive solution modulo 3t provided that n ≥ 2 · 3t + 2 · 3t−1 − 3.

P r o o f. We use induction on t. Notice that for t = 1, 2 the assertion is
true by Theorem 4 and Lemma 8.

Assume now that t ≥ 2 and that every system of the form
{
a1x

k
1 + . . .+ anx

k
n ≡ 0 (mod 3t),

b1x
k
1 + . . .+ bnx

k
n ≡ 0 (mod 3t)

admits a primitive solution modulo 3t if n ≥ 2 · 3t + 2 · 3t−1 − 3.
Let n ≥ 2 · 3t+1 + 2 · 3t − 3 and consider a system

(4)
f = f0 + 3f1 + . . .+ 3tft ≡ 0 (mod 3t+1),

g = g0 + 3g1 + . . .+ 3tgt ≡ 0 (mod 3t+1)

where f, g are forms of degree k, written in canonical form.
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If m1 + . . .+mt ≥ 2 · 3t + 2 · 3t−1 − 3 then we can apply the induction
hypothesis to the system

{
f1 + 3f2 + . . .+ 3t−1ft ≡ 0 (mod 3t),
g1 + 3g2 + . . .+ 3t−1gt ≡ 0 (mod 3t)

obtaining a primitive solution modulo 3t, and hence a primitive solution
modulo 3t+1 for (4).

Assume now that m1 + . . .+mt ≤ 2 · 3t + 2 · 3t−1 − 4.
Our goal here is then to contract as many variables as we can from level

0 in order to obtain

m̃1 + . . .+ m̃t ≥ 2 · 3t + 2 · 3t−1 − 3,

because then by the induction hypothesis we can find a primitive solution
modulo 3t for the system

{
f̃1 + 3f̃2 + . . .+ 3t−1f̃t ≡ 0 (mod 3t),
g̃1 + 3g̃2 + . . .+ 3t−1g̃t ≡ 0 (mod 3t),

hence also for{
f̃0 + 3f̃1 + 32f̃2 + . . .+ 3tf̃t ≡ 0 (mod 3t+1),
g̃0 + 3g̃1 + 32g̃2 + . . .+ 3tg̃t ≡ 0 (mod 3t+1)

and for the original system. In order to get to it we consider many cases:

If 3 ≤ m1 + . . .+mt ≤ 7 = 2 · 3 + 1 then m0 ≥ 2 · 3t+1 + 2 · 3t − 3− 7 =
2 · 3t+1 + 2 · 3t − 32 − 1, hence

[m0/3]− 2 ≥ 2 · 3t + 2 · 3t−1 − 3− 1− 2 = 2 · 3t + 2 · 3t−1 − 2 · 3,
which means that at least 2 ·3t+2 ·3t−1−2 ·3 new variables can be obtained
by contraction of the variables of (f0, g0). Hence

m̃1 + . . .+ m̃t ≥ m1 + . . .+mt + 2 · 3t + 2 · 3t−1 − 2 · 3 ≥ 2 · 3t + 2 · 3t−1 − 3

since m1 + . . .+mt ≥ 3.
Analogous argument can be applied to the cases 1 ≤ m1 + . . .+mt ≤ 2

and m1 + . . .+mt = 0.
Finally, if m1 + . . .+mt ≥ 8 = 2 ·3+2, then there exists i ∈ {0, . . . , t−2}

such that

2 · 3t−i−1 + 2 · 3t−i−2 ≤ m1 + . . .+mt ≤ 2 · 3t−i + 2 · 3t−i−1,

since t ≥ 2, and then

m0 ≥ 2 · 3t+1 + 2 · 3t − 3− (2 · 3t−i + 2 · 3t−i−1),

which implies that

[m0/3]− 2 ≥ 2 · 3t − 2 · 3t−1 − 2 · 3t−i−1 − 2 · 3t−i−2 − 1− 2.
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Hence we obtain after contraction at least 2(3t−3t−1−3t−i−1−3t−i−2)−3
new variables. Then, since m1 + . . .+mt ≥ 2(3t−i−1 + 3t−i−2), we have

m̃1 + . . .+ m̃t ≥ m1 + . . .+mt + 2(3t − 3t−1 − 3t−i−1 − 3t−i−2)− 3
≥ 2 · 3t − 2 · 3t−1 − 3.

4. p-Normalization. The concept and process of p-normalization was
introduced by Davenport and Lewis. In [DL2] they associate with a given
pair of additive forms (f, g) as in (1) a parameter

ϑ = ϑ(f, g) =
∏

i 6=j
(aibj − ajbi)

and show that in order to prove existence of nontrivial common p-adic zeros
for pairs of forms of the type (1) it is enough to consider pairs which satisfy
the additional hypothesis ϑ 6= 0. After defining equivalent pairs and p-
normalized pairs they show that given a pair of forms (f, g) with ϑ 6= 0
there exists a p-normalized pair (f∗, g∗) equivalent to (f, g) with coefficients
in Z and which has a p-adic zero if and only if the original pair does. Thus,
concerning the existence of nontrivial common p-adic zeros for pairs of forms,
it is sufficient to consider p-normalized pairs.

Moreover, if (f, g) is p-normalized then one can show that its canonical
form (2) is such that s = k − 1.

Definition 6. Let (f, g) be p-normalized and written in its canonical
form. For each i ∈ {0, 1, . . . , k − 1} define qi to be the minimum number of
variables appearing in any form λfi + µgi with coefficients not divisible by
p where λ, µ are not both divisible by p.

Davenport and Lewis in [DL2] show that when (f, g) is p-normalized
then

m0 ≥ n/k,(5)
q0 ≥ n/(2k).(6)

Lemma 10. Let k be the degree of the p-normalized pair (f, g) and δ =
(p− 1, k). Define

r = min
([

m0

2δ + 1

]
,

[
q0

δ + 1

])
.

Then there exist r disjoint pairs of subforms (f i0, g
i
0) of (f0, g0) such that

2δ + 1 ≤ mi
0 ≤ 2δ + 2,

and
qi0 ≥ δ + 1

for i = 1, . . . , r, where mi
0 and qi0 are defined analogously to Definitions 4

and 6.

P r o o f. The proof of this lemma is found in [DL2].
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5. The main theorems

5.1. 3-adic case

Theorem A. If k = 2 ·3τk0, where (k0, 3) = 1, τ ≥ 1 and n ≥ 8k2, then
(1) is solvable in the field of 3-adic numbers.

P r o o f. Assume that (f, g) is 3-normalized and consider its canonical
form. By Lemma 3 it suffices to form an NS3τ+1 set. From (5) and (6) it
follows that

m0 ≥ 8k and q0 ≥ 4k,
giving

r = min([m0/5], [q0/3]) ≥ 4
3k.

According to Lemma 10 (since δ = 2) one can find, among the variables of
(f0, g0), r disjoint pairs of subforms with

mi
0 ≥ 5 and qi0 ≥ 3 for i = 1, . . . , r.

Now we can apply Theorem 5 to find a nonsingular solution modulo 3 for
each of these r pairs of subforms, that is, we can form r NS3 sets.

Each NS3 set gives rise by contraction to a new variable at level 1 or
higher. If any of them is at level higher than τ the result follows. Hence we
may assume that all those new r variables are at most at level τ. We then
form a system with them:

3(A1T
k
1 + . . .+ArT

k
r ) ≡ 0 (mod 3τ+1),

3(B1T
k
1 + . . .+BrT

k
r ) ≡ 0 (mod 3τ+1).

By Lemma 9 this system has a primitive solution modulo 3τ+1 since

r ≥ 4
3k ≥ 2 · 3τ + 2 · 3τ−1 − 3.

Let us denote it by ~ξ = (ξ1, . . . , ξr).
Since multiplication of a nonsingular solution by a constant which is co-

prime to 3 preserves nonsingularity (remember that among ξ1, . . . , ξr there
is at least one ξj which is noncongruent to zero modulo 3), we conclude that
ξ1, . . . , ξr multiplied by the coordinates of the nonsingular solutions of the
r NS3 sets, will form an NS3τ+1, as desired.

Proposition 11. Let k = 6k0, where (k0, 3) = 1. If n ≥ 28k + 1 then
the pair (f, g) has a common 3-adic zero.

P r o o f. Assume that (f, g) is 3-normalized. By Lemma 3 it is enough to
form an NS32 set. Since n ≥ 28k + 1, we have (see (5) and (6))

m0 ≥ n/k ≥ 29, q0 ≥ n/(2k) ≥ 15

which implies r ≥ 5. As in Theorem A, by Lemma 10 and Theorem 5, we
can form 5 disjoint NS3 sets. Contracting each of them we will have a system
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with r ≥ 5 variables at level 1 or higher. Using Theorem 4 and the same
ideas as in the above proof, we can find an NS32 set.

5.2. 2-adic case

Lemma 12. The system

(a1x
k
1 + . . .+ amx

k
m) ≡ 0 (mod 22),

(b1xk1 + . . .+ bmx
k
m) ≡ 0 (mod 22)

has a primitive solution modulo 4 provided m ≥ 7.

P r o o f. This is Lemma 2.16 of [G2], but it is important to remark that
the primitive solution given in Lemma 2.16 is composed only by zeros and
ones, therefore this solution is independent of the value of the degree k.

Proposition 13. If n ≥ 2k5/2, where k = 2k0, and k0 is odd and
different from one, then (1) is solvable in Q2.

P r o o f. This proof follows the lines of the proof of Theorem A above.
By Lemma 3 it is enough to form an NS23 set. Since n ≥ 2k5/2 and k ≥ 6
we have

m0 ≥ 2k3/2 ⇒ m0 ≥ 30,

q0 ≥ k3/2 ⇒ q0 ≥ 15.

Therefore

r = min{[m0/3], [q0/2]} ≥ 7,

for δ = 1. Now using Lemma 10 and Theorem 5, we can form 7 NS2. After
contracting all those sets, we consider a new pair of forms involving all those
new variables with their coefficients, say

h = 2(A1T
k
1 + . . .+A7T

k
7 ),

l = 2(B1T
k
1 + . . .+B7T

k
7 ).

Notice that, if we prove that the pair (h, l) admits a primitive solution
modulo 23 then since those variables come from NS2 sets, the original pair
admits a nonsingular solution modulo 23. Now, the pair (h, l) admits a
primitive solution mod 23 if and only if the system

(A1T
k
1 + . . .+A7T

k
7 ) ≡ 0 (mod 22),

(B1T
k
1 + . . .+B7T

k
7 ) ≡ 0 (mod 22)

admits a primitive solution mod 22. Thus, we can use Lemma 12 to find this
primitive solution concluding this proof.
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5.3. The case k = 5τ2k0, τ ≥ 1, (k0, 5) = 1

Lemma 14. Let u1, . . . , us, v1, . . . , vs ∈ Z where at least one in each pair
ui, vi is not divisible by pr. Let k = pτδk0, (k0, p) = 1, and δ = (p− 1, k). If
s ≥ (2δ + 1)r then the system

H = u1x
k
1 + . . .+ usx

k
s ≡ 0 (mod pr),

J = v1x
k
1 + . . .+ vsx

k
s ≡ 0 (mod pr)

has a primitive solution modulo pr.

P r o o f. We use induction on r. If r = 1 the result follows from Theo-
rem 4. Assume that the result is true for r = t ≥ 1; we prove it for r = t+1.
Write (H, J) as (canonical form)

H = H0 + pH1 + . . .+ ptHt ≡ 0 (mod pt+1),

J = J0 + pJ1 + . . .+ ptJt ≡ 0 (mod pt+1),

denoting by mj the number of variables present at level j (Definition 4).
Now divide the pair (H, J) into 2δ+1 pairs of subforms (H(i), J (i)), each

pair having (2δ+1)t variables. Writing each pair (H(i), J (i)) in its canonical
form, and denoting by m(i)

j the number of variables in the pair (H(i), J (i))
present at level j we have

i = 1, . . . , 2δ + 1, j = 0, 1, . . . , t and mj = m
(1)
j + . . .+m

(2δ+1)
j .

If, for some i, m(i)
t = 0 then the pair (H(i), J (i)) has (2δ + 1)i variables

occurring at levels less than t. Hence, we can use the induction hypothesis
and find a primitive solution modulo pt for (H(i), J (i)). After contracting it,
we will have a new variable at level t or higher. If the level is higher than
t, we already have a primitive solution modulo pt+1. So assume that all the
new variables coming from contractions of all the pairs (H(i), J (i)) which
satisfy m

(i)
t = 0 are at level t. We then form a system with the variables

which have already been at level t (i.e., m(i)
t 6= 0) together with those new

ones, say,

pt(A1T
k
1 + . . .+AwT

k
w) ≡ 0 (mod pt+1),

pt(B1T
k
1 + . . .+BwT

k
w) ≡ 0 (mod pt+1),

where at least one in each pair Ai, Bi is not divisible by p. Since there are
2δ + 1 pairs of the form (H(i), J (i)), we have w ≥ 2δ + 1. We can then use
Theorem 4 and conclude this proof.

Proposition 15. If k = 5τ2k0, τ ≥ 1, (k0, 2) = 1 = (k0, 5) and n ≥
2k5/2, then the pair (f, g) has a common 5-adic zero.
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P r o o f. By Lemma 3 it is enough to form an NS5τ+1 set. Since n ≥ 2k5/2,
we have

m0 ≥ 2k3/2 ⇒ m0 ≥ 2(5τ2)3/2,

q0 ≥ k3/2 ⇒ q0 ≥ (5τ2)3/2,

therefore, since δ = (k, 4) = 2,

r = min{[m0/5], [q0/3]} ≥ 5τ .

Now, using Lemma 10 and Theorem 5, we can form 5τ NS5 sets, and, after
contraction and assuming that all those new variables lie at level less than
τ +1, we can form a system with all those new variables which will look like

5(A1T
k
1 + . . .+AsT

k
s ) ≡ 0 (mod 5τ+1),

5(B1T
k
1 + . . .+BsT

k
s ) ≡ 0 (mod 5τ+1),

where s = 5τ . But then s = (2δ + 1)τ . Applying Lemma 14 we conclude
that this system has a primitive solution, which guarantees that therefore
an NS5τ+1 set exists in the original pair.

5.4. Proof of Theorem B

Theorem B. If n ≥ 2k5/2 then (1) is solvable in Qp for every prime p,
provided k 6= 22, 23, 24, 25.

As already remarked in the introduction, we need only pay attention to
the degrees of the form k = pτ (p − 1)k0 with τ ≥ 1 and (k0, p) = 1, and
the particular case k = 5τ2k0, τ ≥ 1, (k0, 5) = 1. For all other cases the
conjecture of Artin is true, as proved in [DL2].

The case k = 5τ2k0, τ ≥ 1, (k0, 5) = 1 = (k0, 2) is treated in Proposition
15. If k = 5τ2k0, τ ≥ 1, (k0, 5) = 1 but (k0, 2) = 2 then k is of the form
k = pτ (p− 1)k0 with τ ≥ 1 and (k0, p) = 1. Hence from now on we assume
k = pτ (p− 1)k0 with τ ≥ 1 and (k0, p) = 1. In this case:

If p ≥ 5 then we assert that the pair (f, g) has a common p-adic zero.
In fact, from Theorem 2 we know that the pair (f, g) has a common p-adic
zero provided n ≥ 2k2+w(τ,p), and it is simple to verify that

p ≥ 5⇒ w(τ, p) ≤ 1/2.

Hence we conclude that n ≥ 2k5/2 implies n ≥ 2k2+w(τ,p) and (1) is solvable
in Qp.

If p = 3 then k = 3τ2k0, and in this case

2k5/2 ≥ 8k2,

unless τ = 1 and k0 ≤ 2. From Theorem A we conclude that unless τ = 1
and k0 ≤ 2 the pair (f, g) is solvable in Q3. And if τ = 1 and k0 ≤ 2, i.e.,
k = 6 or k = 12 we use Proposition 11 to guarantee the solvability of (1) in
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Q3 since

2k5/2 ≥ 28k + 1.

Finally if p = 2 then k = 2τk0, k0 odd. The case k = 2 is treated in [D]
(see introduction) and the case k = 2k0 with k0 odd and k0 6= 1 is treated
in Proposition 13. Hence we are left with the case

k = 2τk0, τ ≥ 2, k0 odd.

By Lemma 3, we want to guarantee the existence of an NS2τ+2 set.
Observe now that, since for any x and for any τ ≥ 2,

x2τ ≡ 0 or 1 (mod 2τ+2)

(proof by induction on τ), we have for any x and for any τ ≥ 2,

x2τk0 ≡ x2τ (mod 2τ+2).

Hence any nonsingular solution modulo 2τ+2 for pairs of degree k = 2τ ,
τ ≥ 2, will also be a nonsingular solution for the pairs involving the same
coefficients but of degree k = 2τk0 for any k0. And since

2(2τ )5/2 ≥ 16(2τ )2 − 26(2τ ) + 1,

except for τ = 2, 3, 4, 5, we could use Theorem 1 to guarantee a common
2-adic zero for the pair of degree 2τ , with the possible exception for k =
22, 23, 24, 25.

The case of degree 22 = 4 was treated in [G1], where it is proved that
pairs of additive quartic forms have common 2-adic zeros provided the num-
ber of variables exceeds 60 (< 2(4)5/2).

We conclude this paper with the following result, a straightforward con-
sequence of which we have seen so far. This gives a better understanding of
the results we have obtained, and makes it clear that the correct order of
magnitude for the number of variables is smaller than 2k3.

Theorem C. Let (f, g) be a pair of additive forms of degree k in n
variables. Then (f, g) has a common p-adic zero for every prime p, whenever
one of the following cases holds:

1. n ≥ 2k2.5 and k 6= 23, 24, 25;
2. n ≥ 2k2.59 and k 6= 23, 24;
3. n ≥ 2k2.72 and k 6= 23;
4. n ≥ 2k2.9.

P r o o f. The first assertion is Theorem B together with the case k = 22

treated in [G1]. For all the other cases, it is easy to verify that, taking
s = 2.59, 2.72 and 2.9 for k = 25, 24 or 23 respectively, one has

2ks ≥ 16k2 − 26k + 1,
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which ensures that, if n ≥ 2ks, then (1) is solvable in Qp for all primes p by
Theorem 1.
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