23,717 research outputs found
Game theory of mind
This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution
Vertex importance extension of betweenness centrality algorithm
Variety of real-life structures can be simplified by a graph. Such simplification emphasizes the structure represented by vertices connected via edges. A common method for the analysis of the vertices importance in a network is betweenness centrality. The centrality is computed using the information about the shortest paths that exist in a graph. This approach puts the importance on the edges that connect the vertices. However, not all vertices are equal. Some of them might be more important than others or have more significant influence on the behavior of the network. Therefore, we introduce the modification of the betweenness centrality algorithm that takes into account the vertex importance. This approach allows the further refinement of the betweenness centrality score to fulfill the needs of the network better. We show this idea on an example of the real traffic network. We test the performance of the algorithm on the traffic network data from the city of Bratislava, Slovakia to prove that the inclusion of the modification does not hinder the original algorithm much. We also provide a visualization of the traffic network of the city of Ostrava, the Czech Republic to show the effect of the vertex importance adjustment. The algorithm was parallelized by MPI (http://www.mpi-forum.org/) and was tested on the supercomputer Salomon (https://docs.it4i.cz/) at IT4Innovations National Supercomputing Center, the Czech Republic.808726
Physics in Riemann's mathematical papers
Riemann's mathematical papers contain many ideas that arise from physics, and
some of them are motivated by problems from physics. In fact, it is not easy to
separate Riemann's ideas in mathematics from those in physics. Furthermore,
Riemann's philosophical ideas are often in the background of his work on
science. The aim of this chapter is to give an overview of Riemann's
mathematical results based on physical reasoning or motivated by physics. We
also elaborate on the relation with philosophy. While we discuss some of
Riemann's philosophical points of view, we review some ideas on the same
subjects emitted by Riemann's predecessors, and in particular Greek
philosophers, mainly the pre-socratics and Aristotle. The final version of this
paper will appear in the book: From Riemann to differential geometry and
relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2
Using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM), we observe a new
two-dimensional (2D) silicon crystal that is formed by depositing additional Si atoms onto spontaneously-formed
epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this
atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron
spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly
enhanced density of states at the Fermi level resulting from newly formed metallic bands. The 2D growth of this
material could allow for direct contacting to the silicene surface and demonstrates the dramatic changes in
electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems
Local Detection of Quantum Correlations with a Single Trapped Ion
As one of the most striking features of quantum mechanics, quantum
correlations are at the heart of quantum information science. Detection of
correlations usually requires access to all the correlated subsystems. However,
in many realistic scenarios this is not feasible since only some of the
subsystems can be controlled and measured. Such cases can be treated as open
quantum systems interacting with an inaccessible environment. Initial
system-environment correlations play a fundamental role for the dynamics of
open quantum systems. Following a recent proposal, we exploit the impact of the
correlations on the open-system dynamics to detect system-environment quantum
correlations without accessing the environment. We use two degrees of freedom
of a trapped ion to model an open system and its environment. The present
method does not require any assumptions about the environment, the interaction
or the initial state and therefore provides a versatile tool for the study of
quantum systems.Comment: 6 Pages, 5 Figures + 6 Pages, 1 Figure of Supplementary Materia
Towards Physical Hybrid Systems
Some hybrid systems models are unsafe for mathematically correct but
physically unrealistic reasons. For example, mathematical models can classify a
system as being unsafe on a set that is too small to have physical importance.
In particular, differences in measure zero sets in models of cyber-physical
systems (CPS) have significant mathematical impact on the mathematical safety
of these models even though differences on measure zero sets have no tangible
physical effect in a real system. We develop the concept of "physical hybrid
systems" (PHS) to help reunite mathematical models with physical reality. We
modify a hybrid systems logic (differential temporal dynamic logic) by adding a
first-class operator to elide distinctions on measure zero sets of time within
CPS models. This approach facilitates modeling since it admits the verification
of a wider class of models, including some physically realistic models that
would otherwise be classified as mathematically unsafe. We also develop a proof
calculus to help with the verification of PHS.Comment: CADE 201
On the breaking of collinear factorization in QCD
We investigate the breakdown of collinear factorization for non-inclusive
observables in hadron-hadron collisions. For pure QCD processes, factorization
is violated at the three-loop level and it has a structure identical to that
encountered previously in the case of super-leading logarithms. In particular,
it is driven by the non-commutation of Coulomb/Glauber gluon exchanges with
other soft exchanges. Beyond QCD, factorization may be violated at the two-loop
level provided that the hard subprocess contains matrix element contributions
with phase differences between different colour topologies.Comment: Version 2: minor improvements for journal publicatio
Monodromy--like Relations for Finite Loop Amplitudes
We investigate the existence of relations for finite one-loop amplitudes in
Yang-Mills theory. Using a diagrammatic formalism and a remarkable connection
between tree and loop level, we deduce sequences of amplitude relations for any
number of external legs.Comment: 24 pages, 6 figures, v2 typos corrected, reference adde
- …
