2,710 research outputs found

    PHILOSOPHICAL CONSIDERATIONS ON BRAIN DEATH AND THE CONCEPT OF THE ORGANISM AS A WHOLE

    Get PDF
    Since intensive care medicine enables us to maintain blood circulation and respiration artificially for some time, the usual criteria for death, such as cardiac arrest and cessation of respiration, are not applicable in all cases. Thus, the irreversible breakdown of the brain functions have come to be accepted as the most prominent factor for the occurrence of death. This criterion is linked primarily to the disintegration of the organism as a whole. Yet the controversy surrounding the moment when a man can be declared dead has not yet been resolved. The decisive weak point in this controversial discussion seems to be that the notion of the "organism as a whole" is inadequately defined. The aim of this work is to fill this void. We developed four general criteria of life: integration, coordination, dynamics, and immanency. Moreover, four additional characteristics are necessary for a living being (organism as a whole): completion, indivisibility, autofinality, and identity. If one of these four characteristics is missing we can only speak of derivative life but not of a living being. In a brain dead body one finds a number of signs of life. These signs of life, however, are not signs of an organism as a whole but signs of a physiological combination of organs whose parts — directed from the outside - are dependent on each other. The brain dead body lacks the four criteria of a living being. Thus it is no longer a living person but purely derivated biological life

    Tracking of physical activity during adolescence: The 1993 Pelotas Birth Cohort, Brazil

    Get PDF
    Objective: To analyze physical activity during adolescence in participants of the 1993 Pelotas Birth Cohort Study, Brazil. Methods: Data on leisure time physical activity at 11, 15, and 18 years of age were analyzed. At each visit, a cut-off point of 300 min/week was used to classify adolescents as active or inactive. A total of 3,736 participants provided data on physical activity at each of the three age points. Results: A significant decline in the proportion of active adolescents was observed from 11 to 18 years of age, particularly among girls (from 32.9% to 21.7%). The proportions of girls and boys who were active at all three age points were 28.0% and 55.1%, respectively. After adjustment for sex, economic status, and skin color, participants who were active at 11 and 15 years of age were 58.0% more likely to be active at 18 years of age compared with those who were inactive at 11 and 15 years of age. Conclusions: Physical activity declined during adolescence and inactivity tended to track over time. Our findings reinforce the need to promote physical activity at early stages of life, because active behavior established early tends to be maintained over time

    MR-guided breast biopsy

    Get PDF

    LISA ON TABLE: AN OPTICAL SIMULATOR FOR LISA

    Get PDF
    LISA, the first space project for detecting gravitational waves, relies on two main technical challenges: the free falling masses and an outstanding precision on phase shift measurements (a few pm on 5 Mkm in the LISA band). The technology of the free falling masses, i.e. their isolation to forces other than gravity and the capability for the spacecraft to precisely follow the test masses, will soon be tested with the technological LISA Pathfinder mission. The performance of the phase measurement will be achieved by at least two stabilization stages: a pre-stabilisation of the laser frequency at a level of 10-13 (relative frequency stability) will be further improved by using numerical algorithms, such as Time Delay Interferometry, which have been theoretically and numerically demonstrated to reach the required performance level (10-21). Nevertheless, these algorithms, though already tested with numerical model of LISA, require experimental validation, including 'realistic' hardware elements. Such an experiment would allow to evaluate the expected noise level and the possible interactions between subsystems. To this end, the APC is currently developing an optical benchtop experiment, called LISA On Table (LOT), which is representative of the three LISA spacecraft. A first module of the LOT experiment has been mounted and is being characterized. After completion this facility may be used by the LISA community to test hardware (photodiodes, phasemeters) or software (reconstruction algorithms) components

    On-chip quantum interference of a superconducting microsphere

    Get PDF
    We propose and analyze an all-magnetic scheme to perform a Young's double slit experiment with a micron-sized superconducting sphere of mass 1013\gtrsim {10}^{13} amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified

    Influence of contact angle on slow evaporation in two-dimensional porous media

    Full text link
    We study numerically the influence of contact angle on slow evaporation in two-dimensional model porous media. For sufficiently low contact angles, the drying pattern is fractal and can be predicted by a simple model combining the invasion percolation model with the computation of the diffusive transport in the gas phase. The overall drying time is minimum in this regime and is independent of contact angle over a large range of contact angles up to the beginning of a transition zone. As the contact angle increases in the transition region, the cooperative smoothing mechanisms of the interface become important and the width of the liquid gas interface fingers that form during the evaporation process increases. The mean overall drying time increases in the transition region up to an upper bound which is reached at a critical contact angle \Theta_c. The increase in the drying time in the transition region is explained in relation with the diffusional screening phenomenon associated with the Laplace equation governing the vapor transport in the gas phase. Above \Theta_c the drying pattern is character- ized by a flat traveling front and the mean overall drying time becomes independent of the contact angle. Drying time fluctuations are studied and are found to be important below \Theta_c, i.e., when the pattern is fractal. The fluctuations are of the same order of magnitude regardless of the value of contact angle in this range. The fluctuations are found to die out abruptly at \Theta_c as the liquid gas interface becomes a flat front
    corecore