2,456 research outputs found
Influence of rotational force fields on the determination of the work done on a driven Brownian particle
For a Brownian system the evolution of thermodynamic quantities is a
stochastic process. In particular, the work performed on a driven colloidal
particle held in an optical trap changes for each realization of the
experimental manipulation, even though the manipulation protocol remains
unchanged. Nevertheless, the work distribution is governed by established laws.
Here, we show how the measurement of the work distribution is influenced by the
presence of rotational, i.e. nonconservative, radiation forces. Experiments on
particles of different materials show that the rotational radiation forces, and
therefore their effect on the work distributions, increase with the particle
refractive index.Comment: 12 pages, 4 figure
A Step-by-step Guide to the Realisation of Advanced Optical Tweezers
Since the pioneering work of Arthur Ashkin, optical tweezers have become an
indispensable tool for contactless manipulation of micro- and nanoparticles.
Nowadays optical tweezers are employed in a myriad of applications
demonstrating the importance of these tools. While the basic principle of
optical tweezers is the use of a strongly focused laser beam to trap and
manipulate particles, ever more complex experimental set-ups are required in
order to perform novel and challenging experiments. With this article, we
provide a detailed step- by-step guide for the construction of advanced optical
manipulation systems. First, we explain how to build a single-beam optical
tweezers on a home-made microscope and how to calibrate it. Improving on this
design, we realize a holographic optical tweezers, which can manipulate
independently multiple particles and generate more sophisticated wavefronts
such as Laguerre-Gaussian beams. Finally, we explain how to implement a speckle
optical tweezers, which permit one to employ random speckle light fields for
deterministic optical manipulation.Comment: 29 pages, 7 figure
Sondeos de Temperatura para la Caracterización del Gradiente Geotérmico en el Área Villa Río Hondo, Santiago del Estero
Fil: Miranda, Fernando. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales; Argentina.Fil: Pesce, Abel H. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales; Argentina
Spectral isolation of naturally reductive metrics on simple Lie groups
We show that within the class of left-invariant naturally reductive metrics
on a compact simple Lie group , every
metric is spectrally isolated. We also observe that any collection of
isospectral compact symmetric spaces is finite; this follows from a somewhat
stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result
demonstrating that any collection of isospectral compact symmetric spaces
must be finite, to appear Math Z. (published online Dec. 2009
Microrheology with optical tweezers: data analysis
We present a data analysis procedure that provides the solution to a long-standing issue in microrheology studies, i.e. the evaluation of the fluids' linear viscoelastic properties from the analysis of a finite set of experimental data, describing (for instance) the time-dependent mean-square displacement of suspended probe particles experiencing Brownian fluctuations. We report, for the first time in the literature, the linear viscoelastic response of an optically trapped bead suspended in a Newtonian fluid, over the entire range of experimentally accessible frequencies. The general validity of the proposed method makes it transferable to the majority of microrheology and rheology techniques
ASCA and contemporaneous ground-based observations of the BL Lacertae objects 1749+096 and 2200+420 (BL Lac)
We present ASCA observations of the radio-selected BL Lacertae objects
1749+096 (z=0.32) and 2200+420 (BL Lac, z=0.069) performed in 1995 Sept and
Nov, respectively. The ASCA spectra of both sources can be described as a first
approximation by a power law with photon index Gamma ~ 2. This is flatter than
for most X-ray-selected BL Lacs observed with ASCA, in agreement with the
predictions of current blazar unification models. While 1749+096 exhibits
tentative evidence for spectral flattening at low energies, a concave continuum
is detected for 2200+420: the steep low-energy component is consistent the
high-energy tail of the synchrotron emission responsible for the longer
wavelengths, while the harder tail at higher energies is the onset of the
Compton component. The spectral energy distributions from radio to gamma-rays
are consistent with synchrotron-self Compton emission from a single homogeneous
region shortward of the IR/optical wavelengths, with a second component in the
radio domain related to a more extended emission region. For 2200+420,
comparing the 1995 Nov state with the optical/GeV flare of 1997 July, we find
that models requiring inverse Compton scattering of external photons provide a
viable mechanism for the production of the highest (GeV) energies during the
flare. An increase of the external radiation density and of the power injected
in the jet can reproduce the flat gamma-ray continuum observed in 1997 July. A
directly testable prediction of this model is that the line luminosity in
2200+420 should vary shortly after (~1 month) a non-thermal synchrotron flare.Comment: 28 pages,6 figures, 5 tables; LaTeX document. accepted for
publication in the Astrophysical Journa
Simple Finite-Control-Set Model Predictive Control of Grid-Forming Inverters with LCL Filters
Indexación: Scopus.Grid-forming inverters (GFI) play an important role as power interfaces for distributed generation units in islanded microgrids, where inductive-capacitive-inductive (LCL) output filters are commonly employed to mitigate the harmonics injected by voltage-source inverters. Due to advantages such as fast dynamic response and straightforward handling of constraints, Finite-control-set model predictive control (FCS-MPC) has become an attractive option for voltage control in GFI systems. However, conventional FCS-MPC algorithms with short prediction horizon have performance limitations in the tracking of ac references in systems with high-order dynamics, such as LCL-filtered GFIs. On the other hand, predictive algorithms with extended prediction horizons suffer from an increased computational burden. This paper proposes a new FCS-MPC algorithm to accurately control the capacitor voltage in an LCL-filtered GFI, using a discrete-time prediction model to dynamically compute the reference for a FCS-MPC inverter-side current controller. The main advantages of the proposed method are its simple implementation without requiring the tuning of weighting factors in its cost function; and its short prediction horizon, which maintains a reduced computational cost. Moreover, active resonance damping elements such as digital filters or ad hoc feedback loops to deal with the LCL filter resonance are not required. Simulation tests and experimental results in a laboratory-scale setup confirm the effectiveness of the proposed control algorithm, yielding lower distortion of output voltage waveforms and increased robustness to modeling errors compared with the conventional FCS-MPC approach.https://ieeexplore.ieee.org/document/908266
Further Closing the Resolution Gap: Integrating Cryo-Soft X-Ray and Light Microscopies
Abstract
Water megamasers from circumnuclear disks in galaxy centers provide the most accurate measurements of supermassive black hole masses and uniquely probe the subparsec accretion processes. At the same time, these systems offer independent crucial constraints of the Hubble constant in the nearby universe, and thus, the arguably best single constraint on the nature of dark energy. The chances of finding these golden standards are, however, abysmally low, at ?3% overall for any level of water maser emission detected at 22 GHz and ?1% for those exhibiting disk-like configuration. We provide here a thorough summary of the current state of detection of water megamaser disks along with a novel investigation of the likelihood of increasing their detection rates based on a multivariate parameter analysis of the optical and mid-infrared (mid-IR) photometric properties of the largest database of galaxies surveyed for 22 GHz emission. We find that galaxies with water megamaser emission tend to be associated with strong emission in all Wide-field Infrared Survey Explorer mid-IR wavelengths, with the strongest enhancement in the W4 band, at 22 μm, as well as with previously proposed and newly found indicators of active galactic nucleus strength in the mid-IR, such as red W1???W2 and W1???W4 colors, and the integrated mid-IR luminosity of the host galaxy. These trends offer a potential boost of the megamaser detection rates to 6%–15%, or a factor of 2–8 relative to the current rates, depending on the chosen sample selection criteria, while fostering real chances for discovering ?20 new megamaser disks
- …