2,068 research outputs found

    Assessment of the state of the art in life support environmental control for SEI

    Get PDF
    This paper defines the types of technology that would be used in a lunar base for environmental control and life support system and how it might relate to in situ materials utilization (ISMU) for the Space Exploration Initiative (SEI). There are three types of interaction between ISMU and the Environmental Control and Life Support System (ECLSS): (1) ISMU can reduce cost of water, oxygen, and possibly diluent gasses provided to ECLSS--a corollary to this fact is that the availability of indigenous resources can dramatically alter life support technology trade studies; (2) ISMU can use ECLSS waste systems as a source of reductant carbon and hydrogen; and (3) ECLSS and ISMU, as two chemical processing technologies used in spacecraft, can share technology, thereby increasing the impact of technology investments in either area

    CPT symmetry and antimatter gravity in general relativity

    Full text link
    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/

    Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    Full text link
    Starting from a unitary, Lorentz invariant two-particle scattering amplitude , we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel non-perturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the non-relativistic Coulomb problem, including the forward scattering singularity, the essential singularity in the phase, and the Bohr bound-state spectrum

    Scale in education research: towards a multi-scale methodology

    Get PDF
    This article explores some theoretical and methodological problems concerned with scale in education research through a critique of a recent mixed-method project. The project was framed by scale metaphors drawn from the physical and earth sciences and I consider how recent thinking around scale, for example in ecosystems and human geography might offer helpful points and angles of view on the challenges of thinking spatially in education research. Working between the spatial metaphors of ecology scholars and the critiques of the human geographers, for example the hypercomplex social space in Lefebvre’s political-economic thinking and the fluid, simultaneous, multiple spatialities of Massey’s post-structuralism, I problematize space and scale in education research. Interweaving these geographical ideas with Giddens’ structuration and Bourdieu’s theory of practice, both of which employed what might be termed scale-bridging to challenge social science’s entrenched paradigms, leads me to reconsider what is possible and desirable in the study of education systems. Following the spatial turn in the social sciences generally, there is an outstanding need to theorise multi-scale methodology for education research

    S-wave eta'-proton FSI; phenomenological analysis of near-threshold production of pi0, eta, and eta' mesons in proton-proton collisions

    Full text link
    We describe a novel technique for comparing total cross sections for the reactions pp --> pp pi(0), pp --> pp eta, and pp --> pp eta' close to threshold. The initial and final state proton-proton interactions are factored out of the total cross section, and the dependence of this reduced cross section on the volume of phase space is discussed. Different models of the proton-proton interaction are compared. We argue that the scattering length of the S-wave eta'-proton interaction is of the order of 0.1 fm.Comment: 10 pages, 5 figure

    Three-neutron resonance trajectories for realistic interaction models

    Full text link
    Three-neutron resonances are investigated using realistic nucleon-nucleon interaction models. The resonance pole trajectories are explored by first adding an additional interaction to artificially bind the three-neutron system and then gradually removing it. The pole positions for the three-neutron states up to J=5/2 are localized in the third energy quadrant-Im (E)<=0, Re (E)<=0-well before the additional interaction is removed. Our study shows that realistic nucleon-nucleon interaction models exclude any possible experimental signature of three-neutron resonances.Comment: 13 pages ; 8 figs ; 5 table

    Near Threshold K+K- Meson-Pair Production in Proton-Proton Collisions

    Get PDF
    The near threshold total cross section and angular distributions of K+K- pair production via the reaction pp --> ppK+K- have been studied at an excess energy of Q = 17 MeV using the COSY-11 facility at the cooler synchrotron COSY. The obtained cross section as well as an upper limit at an excess energy of Q = 3 MeV represent the first measurements on the K+K- production in the region of small excess energies where production via the channel pp --> pp Phi --> ppK+K- is energetically forbidden. The possible influence of a resonant production via intermediate scalar states f0(980) and a0(980) is discussed.Comment: 8 pages, 6 figures, replaced with revised version, accepted for publication in Phys. Lett.

    Energy Dependence of the Near-Threshold Total Cross-Section for the pp --> pp eta' Reaction

    Full text link
    Total cross sections for the pp --> pp eta' reaction have been measured in the excess energy range from Q = 1.53 MeV to Q = 23.64 MeV. The experiment has been performed at the internal installation COSY-11 using a stochastically cooled proton beam of the COoler SYnchrotron COSY and a hydrogen cluster target. The determined energy dependence of the total cross section weakens the hypothesis of the S-wave repulsive interaction between the eta' meson and the proton. New data agree well with predictions based on the phase-space distribution modified by the proton-proton final-state-interaction (FSI) only.Comment: 12 pages, 1 table, 4 figure
    corecore