745 research outputs found
Pulling adsorbed polymers from surfaces with the AFM: stick versus slip, peeling versus gliding
We consider the response of an adsorbed polymer that is pulled by an AFM
within a simple geometric framework. We separately consider the cases of i)
fixed polymer-surface contact point, ii) sticky case where the polymer is
peeled off from the substrate, and iii) slippery case where the polymer glides
over the surface. The resultant behavior depends on the value of the surface
friction coefficient and the adsorption strength. Our resultant force profiles
in principle allow to extract both from non-equilibrium force-spectroscopic
data.Comment: 6 pages, 3 figures; accepted for publication in Europhys. Lett.,
http://www.edpsciences.org/journal/index.cfm?edpsname=ep
Discrete elastic model for stretching-induced flagellar polymorphs
Force-induced reversible transformations between coiled and normal polymorphs
of bacterial flagella have been observed in recent optical-tweezer experiment.
We introduce a discrete elastic rod model with two competing helical states
governed by a fluctuating spin-like variable that represents the underlying
conformational states of flagellin monomers. Using hybrid Brownian dynamics
Monte-Carlo simulations, we show that a helix undergoes shape transitions
dominated by domain wall nucleation and motion in response to externally
applied uniaxial tension. A scaling argument for the critical force is
presented in good agreement with experimental and simulation results.
Stretching rate-dependent elasticity including a buckling instability are
found, also consistent with the experiment
Thermodynamic and Dynamic Anomalies for Dumbbell Molecules Interacting with a Repulsive Ramp-Like Potential
Using collision driven discrete molecular dynamics (DMD), we investigate the
thermodynamics and dynamics of systems of 500 dumbbell molecules interacting by
a purely repulsive ramp-like discretized potential, consisting of steps of
equal size. We compare the behavior of the two systems, with and steps. Each system exhibits both thermodynamic and dynamic anomalies, a
density maximum and the translational and rotational mobilities show anomalous
behavior. Starting with very dense systems and decreasing the density, both
mobilities first increase, reache a maximum, then decrease, reache a minimum,
and finally increase; this behavior is similar to the behavior of SPC/E water.
The regions in the pressure-temperature plane of translational and rotational
mobility anomalies depend strongly on . The product of the translational
diffusion coefficient and the orientational correlation time increases with
temperature, in contrast with the behavior of most liquids
Non-equilibrium hydrodynamics of a rotating filament
The nonlinear dynamics of an elastic filament that is forced to rotate at its
base is studied by hydrodynamic simulation techniques; coupling between
stretch, bend, twist elasticity and thermal fluctuations is included. The
twirling-overwhirling transition is located and found to be strongly
discontinuous. For finite bend and twist persistence length, thermal
fluctuations lower the threshold rotational frequency, for infinite persistence
length the threshold agrees with previous analytical predictions
Statics and Dynamics of Strongly Charged Soft Matter
Soft matter materials, such as polymers, membranes, proteins, are often
electrically charged. This makes them water soluble, which is of great
importance in technological application and a prerequisite for biological
function. We discuss a few static and dynamic systems that are dominated by
charge effects. One class comprises complexation between oppositely charged
objects, for example the adsorption of charged ions or charged polymers (such
as DNA) on oppositely charged substrates of different geometry. The second
class comprises effective interactions between similarly charged objects. Here
the main theme is to understand the experimental finding that similarly and
highly charged bodies attract each other in the presence of multi-valent
counterions. This is demonstrated using field-theoretic arguments as well as
Monte-Carlo simulations for the case of two homogeneously charged bodies.
Realistic surfaces, on the other hand, are corrugated and also exhibit
modulated charge distributions, which is important for static properties such
as the counterion-density distribution, but has even more pronounced
consequences for dynamic properties such as the counterion mobility. More
pronounced dynamic effects are obtained with highly condensed charged systems
in strong electric fields. Likewise, an electrostatically collapsed highly
charged polymer is unfolded and oriented in strong electric fields. At the end
of this review, we give a very brief account of the behavior of water at planar
surfaces and demonstrate using ab-initio methods that specific interactions
between oppositely charged groups cause ion-specific effects that have recently
moved into the focus of interest.Comment: 61 pages, 31 figures, Physics Reports (2005)-in press (high quality
figures available from authors
Stretching helical nano-springs at finite temperature
Using dynamic simulations and analytic methods, we study the elastic response
of a helical filament subject to uniaxial tension over a wide range of bend and
twist persistence length. A low-pitch helix at low temperatures exhibits a
stretching instability and the force-extension curve consists of a sequence of
spikes. At elevated temperature (i.e. small persistence lengths) the helix
melts and a pronounced force plateau is obtained in the fixed-extension
ensemble. The torque boundary condition significantly affects the resulting
elastic properties
Field theory fo charged fluids and colloids
A systematic field theory is presented for charged systems. The one-loop
level corresponds to the classical Debye-H\"uckel (DH) theory, and exhibits the
full hierarchy of multi-body correlations determined by pair-distribution
functions given by the screened DH potential. Higher-loop corrections can lead
to attractive pair interactions between colloids in asymmetric ionic
environments. The free energy follows as a loop-wise expansion in half-integer
powers of the density; the resulting two-phase demixing region shows pronounced
deviations from DH theory for strongly charged colloids.Comment: 4 pages, 2 ps figs; new version corrects some minor typo
Water-like hierarchy of anomalies in a continuous spherical shouldered potential
We investigate by molecular dynamics simulations a continuous isotropic
core-softened potential with attractive well in three dimensions, introduced by
Franzese [cond-mat/0703681, to appear on Journal of Molecular Liquids], that
displays liquid-liquid coexistence with a critical point and water-like density
anomaly. Here we find diffusion and structural anomalies. These anomalies occur
with the same hierarchy that characterizes water. Yet our analysis shows
differences with respect to the water case. Therefore, many of the anomalous
features of water could be present in isotropic systems with soft-core
attractive potentials, such as colloids or liquid metals, consistent with
recent experiments showing polyamorphism in metallic glasses.Comment: 27 pages, 9 figures. to appear in J. Chem. Phy
- …