The nonlinear dynamics of an elastic filament that is forced to rotate at its
base is studied by hydrodynamic simulation techniques; coupling between
stretch, bend, twist elasticity and thermal fluctuations is included. The
twirling-overwhirling transition is located and found to be strongly
discontinuous. For finite bend and twist persistence length, thermal
fluctuations lower the threshold rotational frequency, for infinite persistence
length the threshold agrees with previous analytical predictions