121 research outputs found

    Measures of timed performance and intelligence

    Get PDF
    The question of an association between IQ and measures of timed performance derived from inspection time and reaction time was examined in a sample of 182 adults and by reanalyzing data involving 48 adults from a previously published study. Multiple regression analysis found that measures of timed performance accounted for as much as 25% of IQ variance in the normal population, but that the inclusion of borderline and mildly retarded subjects resulted in much higher correlation coefficients because of the markedly less efficient performance of these persons in tasks of this kind. This outcome raised doubts about the validity of combining data from retarded and nonretarded subjects. Results ran counter to claims that tasks of the kind used are largely uninfluenced by cognitive variables, so that findings are not necessarily explained satisfactorily in terms of a mental speed factor. It was concluded that these measures of timed performance do not, at this time, provide a basis from which a reliable culture-fair measure of intelligence might be devised. Attempts to test intuition that there is an association between some kind of mental speed and intelligence date from the very beginnings of experimental psychology. Although much of the early research did not appear promising

    Relationship between Intelligence and Criterion Task Set Performance1

    Get PDF
    ↵1 This research was sponsored in part by the Workload and Ergonomics Branch of the Armstrong Aerospace Medical Research Laboratory, United States Air Force, under Contract F33615-85-D-0514 through the Southeastern Center for Electrical Engineering Education (SCEEEHER/86-9). The United States Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation hereon. The authors wish to thank Gary Reid for his interest and support in the completion of this projectYeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Consistency checks of results from a Monte Carlo code intercomparison for emitted electron spectra and energy deposition around a single gold nanoparticle irradiated by X-rays

    Get PDF
    Organized by the European Radiation Dosimetry Group (EURADOS), a Monte Carlo code intercomparison exercise was conducted where participants simulated the emitted electron spectra and energy deposition around a single gold nanoparticle (GNP) irradiated by X-rays. In the exercise, the participants scored energy imparted in concentric spherical shells around a spherical volume filled with gold or water as well as the spectral distribution of electrons leaving the GNP. Initially, only the ratio of energy deposition with and without GNP was to be reported. During the evaluation of the exercise, however, the data for energy deposition in the presence and absence of the GNP were also requested. A GNP size of 50 nm and 100 nm diameter was considered as well as two different X-ray spectra (50 kVp and 100 kVp). This introduced a redundancy that can be used to cross-validate the internal consistency of the simulation results. In this work, evaluation of the reported results is presented in terms of integral quantities that can be benchmarked against values obtained from physical properties of the radiation spectra and materials involved. The impact of different interaction cross-section datasets and their implementation in the different Monte Carlo codes is also discussed

    Replication and Virus-Induced Transcriptome of HAdV-5 in Normal Host Cells versus Cancer Cells - Differences of Relevance for Adenoviral Oncolysis

    Get PDF
    Adenoviruses (Ads), especially HAdV-5, have been genetically equipped with tumor-restricted replication potential to enable applications in oncolytic cancer therapy. Such oncolytic adenoviruses have been well tolerated in cancer patients, but their anti-tumor efficacy needs to be enhanced. In this regard, it should be considered that cancer cells, dependent on their tissue of origin, can differ substantially from the normal host cells to which Ads are adapted by complex virus-host interactions. Consequently, viral replication efficiency, a key determinant of oncolytic activity, might be suboptimal in cancer cells. Therefore, we have analyzed both the replication kinetics of HAdV-5 and the virus-induced transcriptome in human bronchial epithelial cells (HBEC) in comparison to cancer cells. This is the first report on genome-wide expression profiling of Ads in their native host cells. We found that E1A expression and onset of viral genome replication are most rapid in HBEC and considerably delayed in melanoma cells. In squamous cell lung carcinoma cells, we observed intermediate HAdV-5 replication kinetics. Infectious particle production, viral spread and lytic activity of HAdV-5 were attenuated in melanoma cells versus HBEC. Expression profiling at the onset of viral genome replication revealed that HAdV-5 induced the strongest changes in the cellular transcriptome in HBEC, followed by lung cancer and melanoma cells. We identified prominent regulation of genes involved in cell cycle and DNA metabolism, replication and packaging in HBEC, which is in accord with the necessity to induce S phase for viral replication. Strikingly, in melanoma cells HAdV-5 triggered opposing regulation of said genes and, in contrast to lung cancer cells, no weak S phase induction was detected when using the E2F promoter as reporter. Our results provide a rationale for improving oncolytic adenoviruses either by adaptation of viral infection to target tumor cells or by modulating tumor cell functions to better support viral replication

    Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system

    Get PDF
    INTRODUCTION: In view of the limited success of available treatment modalities for metastatic breast cancer, alternative and complementary strategies need to be developed. Adenoviral vector mediated strategies for breast cancer gene therapy and virotherapy are a promising novel therapeutic platform for the treatment of breast cancer. However, the promiscuous tropism of adenoviruses (Ads) is a major concern. Employing tissue specific promoters (TSPs) to restrict transgene expression or viral replication is an effective way to increase specificity towards tumor tissues and to reduce adverse effects in non-target tissues such as the liver. In this regard, candidate breast cancer TSPs include promoters of the genes for the epithelial glycoprotein 2 (EGP-2), cyclooxygenase-2 (Cox-2), α-chemokine SDF-1 receptor (stromal-cell-derived factor, CXCR4), secretory leukoprotease inhibitor (SLPI) and survivin. METHODS: We employed E1-deleted Ads that express the reporter gene luciferase under the control of the promoters of interest. We evaluated this class of vectors in various established breast cancer cell lines, primary breast cancer cells and finally in the most stringent preclinical available substrate system, constituted by precision cut tissue slices of human breast cancer and liver. RESULTS: Overall, the CXCR4 promoter exhibited the highest luciferase activity in breast cancer cell lines, primary breast cancer cells and breast cancer tissue slices. Importantly, the CXCR4 promoter displayed a very low activity in human primary fibroblasts and human liver tissue slices. Interestingly, gene expression profiles correlated with the promoter activities both in breast cancer cell lines and primary breast cancer cells. CONCLUSION: These data suggest that the CXCR4 promoter has an ideal 'breast cancer-on/liver-off' profile, and could, therefore, be a powerful tool in Ad vector based gene therapy or virotherapy of the carcinoma of the breast

    The impact of iodine supplementation and bread fortification on urinary iodine concentrations in a mildly iodine deficient population of pregnant women in South Australia

    Get PDF
    Mild iodine deficiency during pregnancy can have significant effects on fetal development and future cognitive function. The purpose of this study was to characterise the iodine status of South Australian women during pregnancy and relate it to the use of iodine-containing multivitamins. The impact of fortification of bread with iodized salt was also assessed. Women (n = 196) were recruited prospectively at the beginning of pregnancy and urine collected at 12, 18, 30, 36 weeks gestation and 6 months postpartum. The use of a multivitamin supplement was recorded at each visit. Spot urinary iodine concentrations (UIC) were assessed. Median UICs were within the mildly deficient range in women not taking supplements (<90 μg/L). Among the women taking iodine-containing multivitamins UICs were within WHO recommendations (150–249 μg/L) for sufficiency and showed an increasing trend through gestation. The fortification of bread with iodized salt increased the median UIC from 68 μg/L to 84 μg/L (p = .011) which was still in the deficient range. Pregnant women in this region of Australia were unlikely to reach recommended iodine levels without an iodine supplement, even after the mandatory iodine supplementation of bread was instituted in October 2009.Vicki L Clifton, Nicolette A Hodyl, Paul A Fogarty, David J Torpy, Rachel Roberts, Ted Nettelbeck, Gary Ma and Basil Hetze

    In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks

    Get PDF
    Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to ‘spared’ tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30–40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies

    RNA interference-mediated knockdown of p21WAF1 enhances anti-tumor cell activity of oncolytic adenoviruses

    Get PDF
    The ability of oncolytic adenoviruses to replicate in and lyse cancer cells offers a potential therapeutic approach. However, selectivity and efficacy of adenovirus replication need to be improved. In this study, we present that loss of p21WAF1 promotes adenovirus replication and more effective cell killing. To test our hypothesis, we took HCT116 colon cancer cell lines carrying deletions of either p21WAF1 or p53, and infected these cell lines with wild-type adenovirus (WtD) or the oncolytic adenoviruses, ONYX-015 and Delta-24. We found that WtD, ONYX-015 and Delta-24 induced stronger cytopathic effects in HCT116 p21−/− cells compared with HCT116-WT cells. This was accompanied by increased virus production. siRNA-mediated knockdown of p21WAF1, and similarly of p27KIP1, in HCT116-WT cells also enhanced replication of and cell killing by these viruses. Furthermore, we found that TE7, an esophageal carcinoma cell line, also showed a strong cell-killing effect and virus production when p21WAF1 expression was suppressed by RNA interference before adenoviruses infection. Also, H1299 and DU-145 cells transfected with p21WAF1 siRNA showed higher virus production after ONYX-015 and Delta-24 infections. These observations suggest that p21WAF1 plays a role in mediating replication of oncolytic viruses with potential implications for adenoviral therapy of cancer

    Tumor Associated Stromal Cells Play a Critical Role on the Outcome of the Oncolytic Efficacy of Conditionally Replicative Adenoviruses

    Get PDF
    The clinical efficacy of conditionally replicative oncolytic adenoviruses (CRAd) is still limited by the inefficient infection of the tumor mass. Since tumor growth is essentially the result of a continuous cross-talk between malignant and tumor-associated stromal cells, targeting both cell compartments may profoundly influence viral efficacy. Therefore, we developed SPARC promoter-based CRAds since the SPARC gene is expressed both in malignant cells and in tumor-associated stromal cells. These CRAds, expressing or not the Herpes Simplex thymidine kinase gene (Ad-F512 and Ad(I)-F512-TK, respectively) exerted a lytic effect on a panel of human melanoma cells expressing SPARC; but they were completely attenuated in normal cells of different origins, including fresh melanocytes, regardless of whether cells expressed or not SPARC. Interestingly, both CRAds displayed cytotoxic activity on SPARC positive-transformed human microendothelial HMEC-1 cells and WI-38 fetal fibroblasts. Both CRAds were therapeutically effective on SPARC positive-human melanoma tumors growing in nude mice but exhibited restricted efficacy in the presence of co-administered HMEC-1 or WI-38 cells. Conversely, co-administration of HMEC-1 cells enhanced the oncolytic efficacy of Ad(I)-F512-TK on SPARC-negative MIA PaCa-2 pancreatic cancer cells in vivo. Moreover, conditioned media produced by stromal cells pre-infected with the CRAds enhanced the in vitro viral oncolytic activity on pancreatic cancer cells, but not on melanoma cells. The whole data indicate that stromal cells might play an important role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses
    corecore