1,074 research outputs found

    Measurements of the single sideband suppression for a 650 GHz heterodyne receiver

    Get PDF
    A large number of atmospheric trace gases, involved in the process of stratospheric ozone depletion, show emission features in the submillimeter wavelength range (lambda = 0.1-1mm). High-resolution heterodyne techniques are a particularly useful tool in this spectral region as vertical distribution of these species can be deduced. Here the receiver has to be operated in the single sideband (ssb) mode preferably to avoid any interferences between the contributions in both receiver sidebands. In the 625-655 GHz heterodyne receiver developed at the University of Bremen a Martin-Puplett interferometer is used as a ssb-filter. A laboratory set-up has been built up to measure the performance of this interferometer

    Ein Membran-Stosswellenrohr fĂĽr Plasmaexperimente. - A Diaphragm Shock Tube for Plasma Experiments.

    No full text

    The cleaved presequence is not required for import of subunit 6 of the cytochrome bc 1 complex into yeast mitochondria or assembly into the complex*

    Get PDF
    Abstract Subunit 6 of the yeast cytochrome bc 1 complex contains a 25 amino acid presequence that is not present in the mature form of the protein in the bc 1 complex. The presequence of subunit 6 is atypical of presequences responsible for targeting proteins to mitochondria. Whereas mitochondrial targeting sequences rarely contain acidic residues and typically contain basic residues that can potentially form an amphiphilic structure, the presequence of subunit 6 contains only one basic amino acid and is enriched in acidic amino acids. If the 25 amino acid presequence is deleted, subunit 6 is imported into mitochondria and assembled into the cytochrome bc 1 complex and the activity of the bc 1 complex is identical to that from a wild-type yeast strain. However, if the C-terminal 45 amino acids are truncated from the protein, subunit 6 is not present in the mitochondria and the activity of the bc 1 complex is diminished by half, identical to that of the bc 1 complex from a yeast strain in which the QCR6 gene is deleted. These results indicate that the presequence of subunit 6 is not required for targeting to mitochondria or assembly of the subunit into the bc 1 complex and that information necessary for targeting and import into mitochondria may be present in the C-terminus of the protein. z 1999 Federation of European Biochemical Societies

    Identification and Characterization of Antifungal Compounds Using a Saccharomyces cerevisiae Reporter Bioassay

    Get PDF
    New antifungal drugs are urgently needed due to the currently limited selection, the emergence of drug resistance, and the toxicity of several commonly used drugs. To identify drug leads, we screened small molecules using a Saccharomyces cerevisiae reporter bioassay in which S. cerevisiae heterologously expresses Hik1, a group III hybrid histidine kinase (HHK) from Magnaporthe grisea. Group III HHKs are integral in fungal cell physiology, and highly conserved throughout this kingdom; they are absent in mammals, making them an attractive drug target. Our screen identified compounds 13 and 33, which showed robust activity against numerous fungal genera including Candida spp., Cryptococcus spp. and molds such as Aspergillus fumigatus and Rhizopus oryzae. Drug-resistant Candida albicans from patients were also highly susceptible to compounds 13 and 33. While the compounds do not act directly on HHKs, microarray analysis showed that compound 13 induced transcripts associated with oxidative stress, and compound 33, transcripts linked with heavy metal stress. Both compounds were highly active against C. albicans biofilm, in vitro and in vivo, and exerted synergy with fluconazole, which was inactive alone. Thus, we identified potent, broad-spectrum antifungal drug leads from a small molecule screen using a high-throughput, S. cerevisiae reporter bioassay

    Draft Genome Sequence of the Marine Streptomyces sp. Strain PP-C42, Isolated from the Baltic Sea

    Get PDF
    Streptomyces, a branch of aerobic Gram-positive bacteria represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain PP-C42 isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides (AMPs) could be identified from the genome, showing great promise as a source for novel bioactive compound

    Draft Genome Sequence of the Marine Streptomyces sp. Strain PP-C42, Isolated from the Baltic Sea

    Get PDF
    Streptomyces, a branch of aerobic Gram-positive bacteria represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain PP-C42 isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides (AMPs) could be identified from the genome, showing great promise as a source for novel bioactive compound

    Multicopy plasmid integration in Komagataella phaffii mediated by a defective auxotrophic marker

    Get PDF
    Background: A commonly used approach to improve recombinant protein production is to increase the levels of expression by providing extra-copies of a heterologous gene. In Komagataella phaffii (Pichia pastoris) this is usually accomplished by transforming cells with an expression vector carrying a drug resistance marker following a screening for multicopy clones on plates with increasingly higher concentrations of an antibiotic. Alternatively, defective auxotrophic markers can be used for the same purpose. These markers are generally transcriptionally impaired genes lacking most of the promoter region. Among the defective markers commonly used in Saccharomyces cerevisiae is leu2-d, an allele of LEU2 which is involved in leucine metabolism. Cells transformed with this marker can recover prototrophy when they carry multiple copies of leu2-d in order to compensate the poor transcription from this defective allele. Results: A K. phaffii strain auxotrophic for leucine (M12) was constructed by disrupting endogenous LEU2. The resulting strain was successfully transformed with a vector carrying leu2-d and an EGFP (enhanced green fluorescent protein) reporter gene. Vector copy numbers were determined from selected clones which grew to different colony sizes on transformation plates. A direct correlation was observed between colony size, number of integrated vectors and EGFP production. By using this approach we were able to isolate genetically stable clones bearing as many as 20 integrated copies of the vector and with no significant effects on cell growth. Conclusions: In this work we have successfully developed a genetic system based on a defective auxotrophic which can be applied to improve heterologous protein production in K. phaffii. The system comprises a K. phaffii leu2 strain and an expression vector carrying the defective leu2-d marker which allowed the isolation of multicopy clones after a single transformation step. Because a linear correlation was observed between copy number and heterologous protein production, this system may provide a simple approach to improve recombinant protein productivity in K. phaffii

    Base-Pairing Versatility Determines Wobble Sites in tRNA Anticodons of Vertebrate Mitogenomes

    Get PDF
    BACKGROUND: Vertebrate mitochondrial genomes typically have one transfer RNA (tRNA) for each synonymous codon family. This limited anticodon repertoire implies that each tRNA anticodon needs to wobble (establish a non-Watson-Crick base pairing between two nucleotides in RNA molecules) to recognize one or more synonymous codons. Different hypotheses have been proposed to explain the factors that determine the nucleotide composition of wobble sites in vertebrate mitochondrial tRNA anticodons. Until now, the two major postulates--the "codon-anticodon adaptation hypothesis" and the "wobble versatility hypothesis"--have not been formally tested in vertebrate mitochondria because both make the same predictions regarding the composition of anticodon wobble sites. The same is true for the more recent "wobble cost hypothesis". PRINCIPAL FINDINGS: In this study we have analyzed the occurrence of synonymous codons and tRNA anticodon wobble sites in 1553 complete vertebrate mitochondrial genomes, focusing on three fish species with mtDNA codon usage bias reversal (L-strand is GT-rich). These mitogenomes constitute an excellent opportunity to study the evolution of the wobble nucleotide composition of tRNA anticodons because due to the reversal the predictions for the anticodon wobble sites differ between the existing hypotheses. We observed that none of the wobble sites of tRNA anticodons in these unusual mitochondrial genomes coevolved to match the new overall codon usage bias, suggesting that nucleotides at the wobble sites of tRNA anticodons in vertebrate mitochondrial genomes are determined by wobble versatility. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, at wobble sites of tRNA anticodons in vertebrate mitogenomes, selection favors the most versatile nucleotide in terms of wobble base-pairing stability and that wobble site composition is not influenced by codon usage. These results are in agreement with the "wobble versatility hypothesis"

    Microtermolides A and B from Termite-Associated Streptomyces sp. and Structural Revision of Vinylamycin

    Get PDF
    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the structure originally proposed for vinylamycin (3). Based on a comparison of predicted and experimental 1^1H and 13^{13}C NMR chemical shifts, we propose that vinylamycin’s structure be revised from 3 to 4
    • …
    corecore