53 research outputs found

    Workshop 1: Surveillance issues of pandemic influenza

    Get PDF
    published_or_final_versio

    Novel avian paramyxovirus isolated from gulls in Caspian seashore in Kazakhstan.

    Get PDF
    Three isolates APMV/gull/Kazakhstan/5976/2014, APMV/gull/Kazakhstan/ 5977/2014 and APMV/gull/Kazakhstan/5979/2014, were obtained from independent samples during annual surveillance for avian influenza and paramyxoviruses in wild birds from the Caspian Sea coast in Western Kazakhstan, and were initially identified as putative paramyxoviruses on the basis of electron microscopy. Hemagglutination Inhibition Assays with antisera to nine known APMV serotypes (APMV1-9) indicated no relation to any of them. Next generation sequencing of whole genome sequences indicated the three isolates were genetically identical, and had a nucleotide structure typical for all APMVs, consisting of six genes 3'-NP-P-M-F-HN-L-5'. Phylogenetic analyses, and assessment of amino acid identities, suggested the most closely related lineages to be APMV-2, 8, 10 and 15, but the novel isolate had less than 64% identity to them and all other known avian paramyxoviruses. This value was above levels considered to generally define other APMV serotypes. Estimates of the evolutionary divergence of the nucleotide sequences of the genomes of APMVs have shown that novel Kazakhstan APMV strain was closest to APMV-2, APMV-8, APMV-10 and APMV-15, with calculated distance values of 2.057, 2.058, 2.026 and 2.286 respectively, which is above values considered to differentiate other serotypes (observed minimum was 1.108 between APMV-1 and recently isolated APMV/UPO216/Korea). Together, the data suggest that isolate APMV/gull/Kazakhstan/5976/2014 and other two should be considered as the first representative of a novel APMV-20 group, and is the first time that avian paramyxoviruses have been found infecting members of the gull family, extending the known taxonomic host range

    Mammalian innate resistance to highly pathogenic avian influenza H5N1 virus infection is mediated through reduced proinflammation and infectious virus release

    Get PDF
    Respiratory epithelial cells and macrophages are the key innate immune cells that play an important role in the pathogenesis of influenza A virus infection. We found that these two cell types from both human and pig showed comparable susceptibilities to initial infection with a highly pathogenic avian influenza (HPAI) H5N1 virus (A/turkey/Turkey/1/05) and a moderately pathogenic human influenza H1N1 virus (A/USSR/77), but there were contrasting differences in host innate immune responses. Human cells mounted vigorous cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokine (CXCL9, CXCL10, and CXCL11) responses to H5N1 virus infection. However, pig epithelial cells and macrophages showed weak or no TNF-α and chemokine induction with the same infections. The apparent lack of a strong proinflammatory response, corroborated by the absence of TNF-α induction in H5N1 virus-challenged pigs, coincided with greater cell death and the reduced release of infectious virus from infected pig epithelial cells. Suppressor of cytokine signaling 3 (SOCS3), a protein suppressor of the JAK-STAT pathway, was constitutively highly expressed and transcriptionally upregulated in H5N1 virus-infected pig epithelial cells and macrophages, in contrast to the corresponding human cells. The overexpression of SOCS3 in infected human macrophages dampened TNF-α induction. In summary, we found that the reported low susceptibility of pigs to contemporary Eurasian HPAI H5N1 virus infections coincides at the level of innate immunity of respiratory epithelial cells and macrophages with a reduced output of viable virus and an attenuated proinflammatory response, possibly mediated in part by SOCS3, which could serve as a target in the treatment or prevention of virus-induced hypercytokinemia, as observed for humans

    Production of Inactivated Influenza H5N1 Vaccines from MDCK Cells in Serum-Free Medium

    Get PDF
    BACKGROUND: Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK) cells grown in a serum-free (SF) medium microcarrier cell culture system. PRINCIPAL FINDING: The current study has evaluated the performance of cell adaptation switched from serum-containing (SC) medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3 × 10(6) cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA) units/50 µL and 7.1 ± 0.3 × 10(8) pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. CONCLUSIONS: The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production

    Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Get PDF
    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally
    corecore