31 research outputs found

    The Transmembrane Isoform of Plasmodium falciparum MAEBL Is Essential for the Invasion of Anopheles Salivary Glands

    Get PDF
    Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites. Alternative splicing generates different MAEBL isoforms and so it is unclear what form is functionally essential. To identify the MAEBL isoform required for P. falciparum (NF54) sporozoite invasion of salivary glands, we created knockout and allelic replacements each carrying CDS of a single MAEBL isoform. Only the transmembrane form of MAEBL is essential and is the first P. falciparum ligand validated as essential for invasion of Anopheles salivary glands. MAEBL is the first P. falciparum ligand experimentally determined to be essential for this important step in the life cycle where the vector becomes infectious for transmitting sporozoites to people. With an increasing emphasis on advancing vector-based transgenic methods for suppression of malaria, it is important that this type of study, using modern molecular genetic tools, is done with the agent of the human disease. Understanding what P. falciparum sporozoite ligands are critical for mosquito transmission will help validate targets for vector-based transmission-blocking strategies

    Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae.

    Get PDF
    Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype

    Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania

    Get PDF
    Background: In rural south-eastern Tanzania, Anopheles funestus is a major malaria vector, and has been implicated in nearly 90% of all infective bites. Unfortunately, little is known about the natural ecological requirements and survival strategies of this mosquito species. Methods: Potential mosquito aquatic habitats were systematically searched along 1000 m transects from the centres of six villages in south-eastern Tanzania. All water bodies were geo-referenced, characterized and examined for presence of Anopheles larvae using standard 350 mLs dippers or 10 L buckets. Larvae were collected for rearing, and the emergent adults identified to confirm habitats containing An. funestus. Results: One hundred and eleven habitats were identified and assessed from the first five villages (all < 300 m altitude). Of these, 36 (32.4%) had An. funestus co-occurring with other mosquito species. Another 47 (42.3%) had other Anopheles species and/or culicines, but not An. funestus, and 28 (25.2%) had no mosquitoes. There were three main habitat types occupied by An. funestus, namely: (a) small spring-fed pools with well-defined perimeters (36.1%), (b) medium-sized natural ponds retaining water most of the year (16.7%), and (c) slow-moving waters along river tributaries (47.2%). The habitats generally had clear waters with emergent surface vegetation, depths > 0.5 m and distances < 100 m from human dwellings. They were permanent or semi-permanent, retaining water most of the year. Water temperatures ranged from 25.2 to 28.8 °C, pH from 6.5 to 6.7, turbidity from 26.6 to 54.8 NTU and total dissolved solids from 60.5 to 80.3 mg/L. In the sixth village (altitude > 400 m), very high densities of An. funestus were found along rivers with slow-moving clear waters and emergent vegetation. Conclusion: This study has documented the diversity and key characteristics of aquatic habitats of An. funestus across villages in south-eastern Tanzania, and will form an important basis for further studies to improve malaria control. The observations suggest that An. funestus habitats in the area can indeed be described as fixed, few and findable based on their unique characteristics. Future studies should investigate the potential of targeting these habitats with larviciding or larval source management to complement malaria control efforts in areas dominated by this vector species

    Proceedings of an expert workshop on community agreement for gene drive research in Africa - Co-organised by KEMRI, PAMCA and Target Malaria.

    Get PDF
    Gene drive research is progressing towards future field evaluation of modified mosquitoes for malaria control in sub-Saharan Africa. While many literature sources and guidance point to the inadequacy of individual informed consent for any genetically modified mosquito release, including gene drive ones, (outside of epidemiological studies that might require blood samples) and at the need for a community-level decision, researchers often find themselves with no specific guidance on how that decision should be made, expressed and by whom. Target Malaria, the Kenya Medical Research Institute and the Pan African Mosquito Control Association co-organised a workshop with researchers and practitioners on this topic to question the model proposed by Target Malaria in its research so far that involved the release of genetically modified sterile male mosquitoes and how this could be adapted to future studies involving gene drive mosquito releases for them to offer reflections about potential best practices. This paper shares the outcomes of that workshop and highlights the remaining topics for discussion before a comprehensive model can be designed

    Proceedings of an expert workshop on community agreement for gene drive research in Africa - Co-organised by KEMRI, PAMCA and Target Malaria.

    Get PDF
    Gene drive research is progressing towards future field evaluation of modified mosquitoes for malaria control in sub-Saharan Africa. While many literature sources and guidance point to the inadequacy of individual informed consent for any genetically modified mosquito release, including gene drive ones, (outside of epidemiological studies that might require blood samples) and at the need for a community-level decision, researchers often find themselves with no specific guidance on how that decision should be made, expressed and by whom. Target Malaria, the Kenya Medical Research Institute and the Pan African Mosquito Control Association co-organised a workshop with researchers and practitioners on this topic to question the model proposed by Target Malaria in its research so far that involved the release of genetically modified sterile male mosquitoes and how this could be adapted to future studies involving gene drive mosquito releases for them to offer reflections about potential best practices. This paper shares the outcomes of that workshop and highlights the remaining topics for discussion before a comprehensive model can be designed

    Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence

    Full text link

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    \u201cIntegrating BOMOSA cage fish farming system in reservoirs, ponds and temporary water bodies in Eastern Africa\u201d

    No full text
    Project summary Project full title: Integrating BOMOSA cage fish farming systems in reservoirs, ponds and temporary water bodies in Eastern Africa Project acronym: BOMOSA Keywords: aquatic farming, participatory approach, socio-economic models Project abstract: The BOMOSA Project will research the economic viability, social acceptance and necessary institutional environment of a relatively simple technology that has been proven technically feasible over the last two years. BOMOSA is pioneering small scale fish farming in Eastern Africa by establishing rural aquaculture networks (coordinated in a \u201chub and plot\u201d system) to economically integrate aquaculture with agriculture. The BOMOSA system will form the basis of a socio-economic model that will contribute to poverty alleviation in Eastern Africa by providing sources of supplementary high protein food and additional income to rural communities in Kenya, Ethiopia and Uganda. The 36-month project involves four European partners: \u2022 two universities, a science academy and an NGO and \u2022 six African partners: two Kenyan universities and four government\u2013run fisheries research centers from Kenya (2) and one each from Ethiopia and Uganda. The summarized scientific and technical objectives of the project are: \u2022 Apply a participatory approach to define targets in terms of economic viability and social acceptability at community levels for the new BOMOSA plots. \u2022 Develop and validate an evaluation method using remote sensing to assess and characterize water bodies for use as potential BOMOSA plots. \u2022 Set up fourteen BOMOSA plots and optimize the technology in three types of small (less than 5 ha.) water bodies within four eco-zones across Kenya, Ethiopia and Uganda. \u2022 Evaluate locally available, agricultural by-products and cost-effective processing technologies as a resource for sustainable production of low-protein fish feed. \u2022 Determine requirements and make recommendations for a legal and regulatory framework based on potential veterinary, public health and environmental impacts of BOMOSA. \u2022 Develop capacity building and dissemination material for the local community, relevant authorities and policy makers and the international scientific community. \u2022 Develop a socio-economic model for sustainable introduction and widespread uptake of the BOMOSA scheme in Eastern Africa
    corecore