97 research outputs found

    Poplar GTL1 Is a Ca2+/Calmodulin-Binding Transcription Factor that Functions in Plant Water Use Efficiency and Drought Tolerance

    Get PDF
    Diminishing global fresh water availability has focused research to elucidate mechanisms of water use in poplar, an economically important species. A GT-2 family trihelix transcription factor that is a determinant of water use efficiency (WUE), PtaGTL1 (GT-2 like 1), was identified in Populus tremula × P. alba (clone 717-IB4). Like other GT-2 family members, PtaGTL1 contains both N- and C-terminal trihelix DNA binding domains. PtaGTL1 expression, driven by the Arabidopsis thaliana AtGTL1 promoter, suppressed the higher WUE and drought tolerance phenotypes of an Arabidopsis GTL1 loss-of-function mutation (gtl1-4). Genetic suppression of gtl1-4 was associated with increased stomatal density due to repression of Arabidopsis STOMATAL DENSITY AND DISTRIBUTION1 (AtSDD1), a negative regulator of stomatal development. Electrophoretic mobility shift assays (EMSA) indicated that a PtaGTL1 C-terminal DNA trihelix binding fragment (PtaGTL1-C) interacted with an AtSDD1 promoter fragment containing the GT3 box (GGTAAA), and this GT3 box was necessary for binding. PtaGTL1-C also interacted with a PtaSDD1 promoter fragment via the GT2 box (GGTAAT). PtaSDD1 encodes a protein with 60% primary sequence identity with AtSDD1. In vitro molecular interaction assays were used to determine that Ca2+-loaded calmodulin (CaM) binds to PtaGTL1-C, which was predicted to have a CaM-interaction domain in the first helix of the C-terminal trihelix DNA binding domain. These results indicate that, in Arabidopsis and poplar, GTL1 and SDD1 are fundamental components of stomatal lineage. In addition, PtaGTL1 is a Ca2+-CaM binding protein, which infers a mechanism by which environmental stimuli can induce Ca2+ signatures that would modulate stomatal development and regulate plant water use

    Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other <it>Populus </it>species.</p> <p>Results</p> <p>Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.</p> <p>Conclusions</p> <p>In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.</p

    Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation

    Get PDF
    The removal of pharmaceuticals (PhACs) present in urban wastewater by membrane bioreactors (MBRs) followed by reverse osmosis (RO) or nanofiltration (NF) membranes has been frequently addressed in the literature. However, data regarding the removal of their main human metabolites and transformation products (TPs) is still scarce. In this study, the presence of 13 PhACs and 20 of their metabolites and TPs was monitored during 2 consecutive years in the different treatment steps of urban raw wastewater (sewer, primary treatment, MBR and RO/NF). Rejection of the selected contaminants when using low pressure NF membranes (NF-90) or RO membranes (ESPA 2) after the MBR step was also investigated. The analgesic acetaminophen, which was found at the highest concentrations in the sewer and influent samples (18–74 ”g L-1) over the two experimental periods, was fully eliminated during MBR treatment. Those PhACs that were only partially removed after the MBR, were almost completely removed (>99%) by the RO membrane working under different process conditions. At a similar average permeate fluxes (18 L m-2 h-1), the NF membrane showed high removal efficiencies (>90%) for all of the PhACs and their metabolites, though lower than those achieved by the RO membrane. When the flux of the NF90 membrane was increased to 30 L m-2 h-1 (while still operating at a feed pressure lower than the RO membrane at 18 L m-2 h-1) the performance of the membrane increased, achieving 98% rejection of PhACs.Peer ReviewedPostprint (author's final draft
    • 

    corecore