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Abstract

Background: Elucidation of genotype-to-phenotype relationships is a major challenge in biology. In plants, it is the
basis for molecular breeding. Quantitative Trait Locus (QTL) mapping enables to link variation at the trait level to
variation at the genomic level. However, QTL regions typically contain tens to hundreds of genes. In order to prioritize
such candidate genes, we show that we can identify potentially causal genes for a trait based on overrepresentation of
biological processes (gene functions) for the candidate genes in the QTL regions of that trait.

Results: The prioritization method was applied to rice QTL data, using gene functions predicted on the basis of
sequence- and expression-information. The average reduction of the number of genes was over ten-fold. Comparison
with various types of experimental datasets (including QTL fine-mapping and Genome Wide Association Study results)
indicated both statistical significance and biological relevance of the obtained connections between genes and traits. A
detailed analysis of flowering time QTLs illustrates that genes with completely unknown function are likely to play a role
in this important trait.

Conclusions: Our approach can guide further experimentation and validation of causal genes for quantitative traits.
This way it capitalizes on QTL data to uncover how individual genes influence trait variation.

Keywords: Quantitative trait locus, Candidate gene prioritization, Gene function prediction
Background
The elucidation of genotype-to-phenotype relationships re-
mains a major challenge in biology. The causal relationship
between variation of a trait-of-interest and genotypic differ-
ences is important for understanding genome evolution
and functioning. In plants, it is the basis for developing tar-
geted strategies in molecular breeding [1,2]. Technological
developments in high-throughput phenotyping and next
generation sequencing (NGS) are revolutionizing the scale
of determination of phenotypes and genotypes [3,4].
A current bottleneck is the integration of all these

data to unravel the molecular mechanisms behind traits-
of-interest. Quantitative Trait Locus (QTL) mapping is an
attractive approach to link genetic determinants to
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phenotypes [5-8]. In combination with physical maps,
QTL studies have identified numerous genomic regions of
various plants responsible for variation in particular traits.
QTL analyses often are the primer to candidate gene map-
ping [9], but experimental approaches to identify the
causal genes underlying a QTL are labor-intensive, time-
consuming and expensive [10]. The limited number of
crosses that can reasonably be performed leads to a low
number of recombinations, which in turn means that
QTLs are generally mapped with a low resolution: QTL
regions typically contain tens to hundreds of genes.
Therefore, methods that help prioritizing QTL candidate

genes using a computational approach would be very help-
ful in unraveling genotype-to-phenotype relationships.
Such prioritization is well developed in human disease gen-
etics, where several criteria, such as the putative deleteri-
ousness of a variant, evolutionary conservation, and known
biological pathways, are taken into account [11-23]. How-
ever, in plant biology and breeding, QTL candidate gene
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prioritization is much less developed. One approach con-
sists of using genes previously identified as influencing the
trait under study and test whether these explain a QTL
[24,25], but this approach is limited to existing knowledge
about genotype-to-phenotype relationships. Other ap-
proaches focus on integrating and visualizing existing in-
formation for prioritization [26-28] or merely give an
overview of previously determined QTL candidate genes
[29,30]. Little use has been made of biological pathways or
predicted gene functions [31-33].
As an alternative experimental approach, genome-

wide association studies (GWAS), which take advantage
of historical recombination events, are able to increase
resolution. However, GWAS can suffer from problems
such as confounding due to genetic background, or
diminishing power to find associations for rare alleles
[5]. Moreover, existing diversity in a population available
for GWAS analysis need not be relevant for a trait-of-
interest.
We here present a novel computational method for

plant QTL candidate gene prioritization. In our approach
(Figure 1A), for each gene contained in every QTL region
for a trait-of-interest, we first predict which biological pro-
cesses it is involved in. This is done using our previously
developed gene function prediction method BMRF, which
uses sequence data and co-expression information as
Figure 1 Prioritizing QTL candidate genes via associating traits to bio
(indicated as different colored boxes) are annotated for genes in QTL regio
process associations are obtained based on enrichment of biological processe
from multiple QTL regions. Genes annotated with overrepresented biological
in the rice QTL compendium used for this analysis. The scale of the horizonta
regions associated (~2% of the total) are not included. (C) Number of genes c
horizontal axis in the histogram is clipped at 5000, so traits with more than 50
input [34]. Enrichment (overrepresentation) of biological
process (BP) terms, preferably based on multiple QTL re-
gions for a given trait, allows association of the trait-of-
interest with specific biological processes. Overrepresented
BP terms are used to prioritize the candidate genes from
the QTL gene lists that are most likely to be the under-
lying causal genes responsible for the variation in the trait-
of-interest.
We applied this method in rice (Oryza sativa), chosen

because of the large amount of QTL data available [35].
For a series of traits, we demonstrate the performance
of candidate gene prioritization by comparing predic-
tions with sets of genes known to be involved in the
traits analyzed. On average, for 153 rice traits, a ten-fold
reduction in the number of candidate genes was ob-
tained by our prioritization. These results enable to
capitalize on QTL data to uncover how individual genes
influence trait variation.

Methods
From traits to genes
For 231 traits, QTL intervals reported as significant
were extracted from the rice Gramene QTL compen-
dium [35]. Genes in the QTL intervals were obtained
from rice genome build 2009-01-MSU downloaded
from Gramene [36]. To prevent too large regions to be
logical processes. (A) Principle of method used: Biological processes
ns for a trait-of-interest. Using these gene functions, trait-biological
s among the genes linked to a particular trait, integrating information
processes are prioritized. (B) Number of QTL regions connected to traits
l axis in the histogram is clipped at 50, so traits with more than 50 QTL
onnected to traits in the rice QTL compendium. The scale of the
00 genes associated (~5% of the total) are not included.
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used, a cutoff on maximum number of genes for a QTL
interval was set to 450 genes; QTL regions containing
more genes were excluded. This was based on testing
the number of associations obtained for various size
cutoffs (Additional file 1, SI Text).
Linking genes to function
To predict gene functions (biological processes), BMRF
[37-39] was applied using the PlaNet coexpression net-
work [40] in combination with Argot2 [41] as recently
described [34]. We compared the prioritization results
obtained with these annotations with alternative existing
function annotation from phytozome [42].
Linking traits to function
For a set of genes contained in QTL regions associated
with a particular trait, the occurrence of associated Gene
Ontology BP terms was compared with the overall occur-
rence of these terms in the respective genome. To assess
statistical significance, Fisher exact tests were applied as
implemented in the R-function fisher.exact [43]. To adjust
for multiple testing, a multiple testing correction was ap-
plied with the Benjamini-Hochberg method as imple-
mented in the R-function p.adjust [44].
As part of the overrepresentation and gene prioritization

analysis, three parameters were defined: (1) The False Dis-
covery Rate (FDR) which defines the stringency of the
multiple testing correction applied to the results of the
Fisher exact test; (2) the minimum fraction of QTL re-
gions for the trait-of-interest in which the BP term should
at least occur; this prevents the use of statistically enriched
BP terms present only in a small number of QTL regions;
and (3) the maximum allowed BP term generality; i.e., only
BP terms were used for which not too many genes were
annotated genome-wide, to prevent the use of BP terms
which are enriched in the QTL regions for a trait but
which are very general and not likely to be useful for can-
didate gene prioritization. In order to find optimal values
for these three parameters, the prioritized genes were
compared with a set of known causal genes underlying
QTLs (Additional file 1: Figure S1). The agreement be-
tween the prioritization predictions and the known causal
genes was expressed as a p-value, based on comparison of
the known causal QTL genes with randomly selected gene
sets (see next section). Analyses presented in the paper
used the optimized parameter values: FDR = 0.1, occur-
rence of the BP in at least 50% of the regions, and general-
ity of the BP term not higher than 1%.
To compare the results of this procedure applied to an

input set consisting of randomized gene function anno-
tations, predicted gene functions were randomly reas-
signed to rice genes.
Comparison with experimental datasets and analysis of
prioritized candidate genes
Candidate genes occurring in QTL regions were priori-
tized based on their annotation with at least one of the
overrepresented biological processes. To validate these
predictions, a set of fine-mapped candidate genes was
obtained from the literature. Identifiers of fine-mapped
genes were either obtained directly from the publications
in which they were reported, or converted using the in-
formation from RAP-DB (http://rapdblegacy.dna.affrc.
go.jp/download/latest/RAP-MSU.txt.gz).
To assess the significance of fine-mapped gene retention

after prioritizing genes, random gene sets were selected
out of the QTL regions associated to the various traits; the
size of these gene sets for each trait was identical to the
number of genes selected by the prioritization approach.
This was repeated 1,000 times, and to obtain a p-value, it
was counted how many of the random folds retained at
least the same number of fine-mapped genes as the num-
ber observed with the prioritization approach.
Comparison of prioritized candidate genes with tran-

scription factors was performed using a list of rice tran-
scription factors obtained from http://planttfdb.cbi.edu.
cn/download/gene_model_family/Osj [45]. Comparison
of predicted candidate genes with rice GWAS data was
performed using data from two previous studies [8,46].
For each SNP reported as associated to a trait in those
two studies, the three genes located closest to that SNP
were considered as potentially causal candidates and
were compared with the genes predicted based on QTL
gene prioritization.

Results
QTL candidate gene prioritization
Our prioritization approach is based on the assumption
that multiple QTL regions for a trait reflect variation in
genes involved in the same biological process. To test this
assumption, a dataset collected from various rice QTL
mapping studies was used, as available in the Gramene
database [35,36]. This set comprised in total 231 different
traits, divided over nine different categories: abiotic stress,
anatomy, biochemical, biotic stress, development, quality,
sterility or fertility, vigor, and yield. Each of these traits
was linked to one or more QTL regions, which were an-
chored along the rice genome. We removed from subse-
quent analyses each QTL region with more than 450
genes (Additional file 1, SI Text). Out of the 231 traits, the
large majority (179, i.e. 77%) was associated with QTL re-
gions that passed this size threshold, involving 1,591 QTL
regions (Table 1). The distribution of the number of QTL
regions per trait is presented in Figure 1B. Most traits
(148 out of 179, i.e. 83%) are linked to multiple QTL re-
gions; 68% of the traits (121) are linked to at least three
QTL regions. This is important because as mentioned

http://rapdblegacy.dna.affrc.go.jp/download/latest/RAP-MSU.txt.gz
http://rapdblegacy.dna.affrc.go.jp/download/latest/RAP-MSU.txt.gz
http://planttfdb.cbi.edu.cn/download/gene_model_family/Osj
http://planttfdb.cbi.edu.cn/download/gene_model_family/Osj


Table 1 Associations between traits and biological
processesa

Input data

#traits 179

#QTL regions 1591

#BP terms 1767

#relevant BP termsb 1522

Prioritization results

#trait-BP associations 2519

#traits involved 153

#BP terms involved 918
aAs intermediate step in candidate gene prioritization, traits and biological
processes (BPs) were associated using overrepresentation of biological processes
found for genes connected with each trait in the rice Gramene QTL compendium.
bOnly BP terms which were associated with less than 1% of the genes in the
genome were used as input terms in our analysis (i.e., a filter on the maximum
allowed generality of the biological process was applied).

Table 2 Candidate gene prioritization: comparison with
QTL fine-mappinga

Trait and fine-mapped
candidate gene

#genes #sel Overrepresented biological
processes involved

Leaf size: 214 21 regulation of flower
development

LOC_Os01g11940 [47] lysine biosynthetic process
via diaminopimelate

Leaf size: 214 21 organic acid catabolic process

LOC_Os01g11946 [47]

Number of spikelets
per panicle:
LOC_Os01g12160 [48]

246 8 systemic acquired resistance

Gel consistency: 167 14 monosaccharide
metabolic process

LOC_Os06g04200 [49] glycolipid biosynthetic process

membrane lipid
biosynthetic process

glucose metabolic process

Gelatinization
temperature:

53 3 monosaccharide
metabolic process

LOC_Os06g12450 [50] glycolipid biosynthetic process

membrane lipid
biosynthetic process

Heading date: 330 13 positive regulation of RNA
metabolic process

LOC_Os08g07740 [51]b positive regulation of
nucleobase-containing
compound metabolic process

positive regulation of
(macromolecule/cellular)
metabolic process

Yield, plant height: 188 8 positive regulation of
macromolecule/cellular/
nitrogen compound
biosynthetic process

LOC_Os08g07740 [52]b positive regulation of
gene expression

Grain size and quality: 300 29 regulation of post-embryonic
development

LOC_Os08g41940 [53]

Viscosity parameter: 120 4 monosaccharide/glucose
meta-/catabolic process

LOC_Os08g42410 [54] glycolysis

hexose catabolic process

alcohol catabolic process
aFor each trait found in literature with a fine-mapped candidate gene, QTL
traits in our dataset were obtained which were similar/related to the literature
trait, and for which the fine-mapped gene occurred in one of the QTL regions.
Only cases for which the candidate gene was correctly prioritized by our
approach are shown, in combination with the biological processes involved.
#genes, number of genes in the input QTL region. #sel, total number of genes
prioritized in the QTL region. For complete overview of comparison with
fine-mapped candidate genes, see Additional file 3: Table S3.
bLOC_Os08g07740 is found as fine-mapped candidate gene for two different traits.
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above, the prioritization approach is based on the assump-
tion that multiple QTL regions for a trait reflect variation
in genes involved in the same biological process. For all
traits in the dataset, the associated genes were obtained
from the genomic positions of the QTL regions. The aver-
age number of genes in a given QTL region is 140 ? 121
(? standard deviation). The number of genes per trait is
given in Figure 1C; the total number of genes associated
to each trait was on average 1,248 ? 1,869. In total, 38,366
genes were present in at least one QTL region; this is al-
most identical to the total number of genes in our rice
functional annotation (38,998). Overall, these numbers
clearly indicate the limited resolution of QTL data and
emphasize the need for prioritization (See Table 2).
Associations between traits and biological process (BP)

terms as defined in the Gene Ontology (GO) [55] were
generated based on overrepresentation of BP terms in
the QTL regions associated to a trait. As input BP terms
we used our recently presented set of gene function pre-
dictions for rice [34], which consists of 1,767 different
BP terms. On average, 23 BP terms occur per gene that
can range from very high-level to very specific GO
terms, and 494 ? 344 different BP terms occur in a QTL
region. In order to focus only on BP terms which are
not at a very high-level, a cutoff was applied on the max-
imum allowed number of genes annotated with a bio-
logical process genome-wide. In addition, a second cutoff
was applied on the minimum fraction of QTL regions for
a trait in which a BP should occur. The reasoning behind
this cutoff was that a gene function reoccurring in mul-
tiple different QTL regions for the same trait is more rele-
vant for candidate gene prioritization than a gene function
that occurs several times in one QTL region for that trait.
Values for these cutoffs are described in the Methods sec-
tion and were obtained using comparison with genes fine-
mapped as underlying QTLs.
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For a given trait, we calculated overrepresentation of BP
terms associated with all genes in all QTL regions (i.e. all
candidate genes) as follows. From all candidate genes for
the trait under investigation we determined the number of
genes annotated with a particular BP term. This number
was compared with the number of genes annotated with
that same BP term in the whole genome. Enrichment was
assessed using a Fisher exact test with multiple testing cor-
rection after testing for all traits and all biological pro-
cesses. Within each QTL region for a given trait, genes
associated with the overrepresented BP terms for that trait
were identified as the candidate genes that are the most
likely causal genes for that trait; we will refer to these as
? prioritized candidate genes ? . Because biological pro-
cesses are intermediate in the process of candidate gene
prioritization in this approach, we first discuss the bio-
logical processes selected, and then present the results
of candidate gene prioritization based on these.

Analysis of the association of traits with biological
process terms
From a list of 179 different traits in rice, for 153 traits
2519 associations with BP terms were obtained. For only
26 traits, no association with any BP was obtained at all.
For most traits (134 out of 179, i.e. 75%) twenty or less BP
term associations were obtained (Figure 2A). The detailed
associations between traits and biological processes are
given in (Additional file 2: Table S1) and summarized data
are given in Table 1. In total, 918 BP terms (60%) were in-
volved in at least one association to a trait (Figure 2B).
Inspection of these associations based on prior know-

ledge or through relevant literature shows that several
connections were evident. These include the term ?cata-
bolic processes ? found for yield related traits; for the trait
days to maturity, ? carpel development ? ; for leaf height,
? regulation of cell cycle process ? ; and for root activity
both ? organ development ? and ? negative regulator of cell
Figure 2 Associations between traits and biological processes. (A) His
trait. (B) Histogram of number of associations to traits per biological proce
cycle ? . Associations confirmed in literature include the
link between the trait potassium uptake and glucose/gal-
actose-related processes: potassium deficiency led to the
inhibition of glycolysis and a build-up of root sugar
levels in Arabidopsis [56]. For the yield trait ? harvest
index ? (weight of the harvested grain as percentage of
total plant weight), the link with the BP ? response to
brassinosteroid stimulus? is confirmed by the fact that
manipulation of brassinosteroid level or brassinosteroid
sensitivity influences yield [57].
To assess the significance of the obtained number of

associations the procedure was repeated after randomly
reassigning biological processes to genes. In this way no
biological process-trait associations were obtained. In
addition, we considered whether there is added value of
using our BMRF function annotations for candidate gene
prioritization compared to using alternative existing anno-
tations. We found that existing rice gene function annota-
tions resulted in less than half the number of associations
obtained with our approach (data not shown). This con-
firms that our gene function annotation better enables to
find associations between traits and BP terms. This is in
line with the performance observed for our set of predic-
tions, when comparing with experimentally determined
gene functions [34]. This comparison indicated they were
of high quality, demonstrating the added value of integrat-
ing sequence- and expression information for gene func-
tion prediction [34].

Prioritization performance
The associations between traits and overrepresented bio-
logical processes allow narrowing down the number of
candidate genes for a trait in a QTL region: genes asso-
ciated with those BPs constitute the potentially causal
genes. In total, for 153 traits, 6,175 prioritized candidate
genes were obtained (Additional file 2: Table S2; see also
www.ab.wur.nl/bmrftrait which allows to search on gene
togram of number of associations to biological processes (BPs) per
ss.

http://www.ab.wur.nl/bmrftrait
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or trait), involving 1,120 different QTL regions. This in-
volved a more than ten-fold reduction in the number of
candidate genes: averaged over the traits, 9% ? 5% of
QTL candidate genes were prioritized. Per QTL region,
the average number of prioritized genes was 13 ? 13
which is indeed an over ten-fold reduction compared to
the above-mentioned number of 140 ? 121 candidate
genes per input QTL region. We assessed the relevance
of the prioritization in several ways.
First, a simulation analysis indicated that overrepre-

sented biological processes allow to preferentially select,
i.e. prioritize, relevant candidate genes. Upon randomly
adding genes to the set of genes present in the QTL re-
gions for a trait, the enrichment analysis tends to iden-
tify genes that occur in the original QTL regions and
not randomly added genes (Additional file 1). This
shows that our prioritization protocol can do away with
deliberately added noise.
Second, we compared the prioritization results with a

set of genes in rice that were experimentally validated by
QTL fine-mapping as truly causal gene for the trait-of-
interest. To do so, fine-mapping results for various traits
obtained from literature were matched to traits in the
Gramene QTL database. This established a test set of 16
genes that should be prioritized in the analysis. Of these
16 genes, 8 were indeed prioritized by our approach
(Table 2, Additional file 3: Table S3). The percentage of
correctly prioritized candidate genes (8/16, 50%) is much
higher than the above mentioned percentage of genes
that is prioritized using our approach (9%). Hence,
prioritization based on BP term overrepresentation re-
duces the number of candidate genes over tenfold while
at the same time the loss of validated causal genes is
only twofold. Compared with randomly selected gene
sets, this is very significant (p < 0.001). Note that the set
of fine-mapped causal genes used in this comparison
was also used in setting the two cutoff values applied in
our prioritization method (see above). Hence, this data-
set does not constitute independent validation of our
method. However, irrespective of the exact cutoff values
chosen, prioritization results were always significant, ex-
cept for a very high value of the cutoff on the fraction of
QTL regions in which a prioritized BP should occur
(>90%; Additional file 1: Figure S1). Changing the values
of the applied cutoffs would allow to recover more truly
causal genes, but at the expense of also obtaining a lar-
ger set of prioritized candidate genes overall. For ex-
ample, when the cutoff on the maximum allowed
percentage of genes annotated with a biological process
genome-wide would be set to 20% instead of the chosen
value of 1%, we would recover 13 out of 16 genes (80%)
instead of 8 out of 16 (50%). However, with this setting,
the average percentage of prioritized genes would be
25% (instead of 9%).
Note that uncertainty in the set of causal genes that
we use as reference set will lead to an underestimate of
the performance of our method in correctly prioritizing
fine-mapped genes. There are at least three sources of
such uncertainty. First, traits mentioned in the literature
for which fine-mapped genes were found, were matched
to traits in the rice QTL compendium available. How-
ever, in most cases, the trait was not exactly the same
trait as the one for which fine-mapping was performed
(Additional file 3: Table S3). In such cases, the causal
gene underlying the literature trait might be different
from the causal gene for the trait included in this ana-
lysis. Second, even when the trait is identical, the popu-
lations in the dataset and in the experimental study in
which the candidate gene was fine-mapped do not need
to be the same. The causal gene that was fine-mapped
may therefore not be the causal gene in the QTL region
we used. Third, available fine-mapping results do not al-
ways exclude that a neighboring gene is the actual causal
gene. The resolution of fine-mapping is limited and
often the causal gene is chosen from a small number of
fine-mapped candidates based on e.g. molecular func-
tion. One example of both the first and third source of
uncertainty is given by the gene LOC_Os06g04820 fine
mapped for the trait ? small panicle and dwarfness ? [58].
This trait did not match exactly to a trait in our input
set, but we used ? plant height? and ? grain yield per plant?
as substitute traits, because some of the input QTL re-
gions for those traits overlapped with the region ana-
lyzed in this reference. Our prioritization approach did
not return LOC_Os06g04820. In addition to the potential
mismatch between the traits, this could also be due to
the fact that the fine-mapping by [58] did not identify
LOC_Os06g04820 unambiguously, but identified a group
of four genes (LOC_Os06g04810, LOC_Os06g04820,
LOC_Os06g04830 and LOC_Os06g04840) among which
LOC_Os06g04820 was chosen as the most likely candi-
date. Although neither of those other three genes was
identified by our prioritization approach, a gene immedi-
ately neighbouring these genes, LOC_Os06g04800, was
prioritized for both the traits ? plant height? and ? grain
yield per plant ? by our approach.

Comparison with large scale experimental datasets
Further comparison with experimental data was per-
formed using two large scale datasets. First, data from a
rice database defining associations between in total 637
traits and 239 genes [59] were used. Most of these associa-
tions are not based on QTL fine-mapping but on e.g. ana-
lysis of mutants. This means that we do not necessarily
expect a perfect agreement between those data and our
predictions. For 26 gene-trait associations from this data-
base both trait and gene were present in the QTL data,
meaning that they could be used for this analysis. From
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these 26 cases, 8 gene-trait associations were identified
(Table 3). This number is significant (p ~ 0.04), based on
comparison with randomized gene-trait associations. Im-
portantly, our results do not just recapitulate those experi-
mentally known associations between traits and genes, but
indicate which biological processes (gene functions) could
be involved in those associations. Some of these bio-
logical processes (Table 3) are quite obvious (e.g.
NADPH regeneration in relation to the trait chloro-
phyll content) but others give insight into complex
traits such as plant height. For the latter, overrepre-
sented biological processes include phosphorylation
related processes, ethylene related processes, and pro-
cesses related to pattern formation.
Second, we screened the prioritization with the results

of two rice GWAS studies [8,46]. For 14 traits in the
Gramene QTL compendium, an equivalent trait was
present in the GWAS data (Additional file 3: Table S4).
For 12 of these traits, genes in QTL regions were priori-
tized. For these genes we assessed whether they were
found in the neighborhood of significant SNPs identi-
fied by GWAS (neighborhood was defined as the three
genes nearest to the GWAS SNP). Note that, similar as
for the above presented comparison with gene-trait
combinations, we do not expect perfect agreement be-
tween our QTL-based prioritization and the results of
these GWAS studies. Nevertheless, 37 of the prioritized
candidate genes were in the neighborhood of significant
SNPs identified by GWAS; these involved 6 of the 12
traits. Comparison with randomized sets of genes se-
lected from the QTL regions for those traits indicates
that the number of 37 genes was significant (p ~ 0.03).
Taken together, these results demonstrate that our
prioritization strategy results in lists of prioritized can-
didate genes that are significantly enriched for trait-
relevant genes.
Table 3 Validated causal genesa

Gene Trait Overr

LOC_Os01g10840 plant height intrace
xylem

LOC_Os01g58420 spikelet number cellula

LOC_Os01g66120 plant height positiv
metab

LOC_Os02g43790 spikelet number cellula

LOC_Os03g03370 relative water content microg

LOC_Os08g06380 plant height two-co
signali

LOC_Os09g26400 chlorophyll content NADP

LOC_Os11g08210 plant height positiv
compo

aGenes prioritized for traits based on overrepresentation of biological processes in
results [59].
Importance of transcription factors among
prioritized genes
An important question with respect to the prioritized
candidate genes is whether these have any special prop-
erties which make them a priori more likely to be causal
genes. In particular, we analyzed the role of transcription
factors (TFs) among the prioritized candidate genes. In
the rice genome, 3.1% of the genes are transcription fac-
tors [45], and in the set of all genes in the QTL regions
(i.e. all candidate genes) it is 3.8%. However, in the set of
prioritized candidate genes, the percentage of TFs is
11.0%. When distinguishing prioritized candidate genes
associated to only one trait (2,758 in total) and those asso-
ciated with more than one trait (3,417 in total), the per-
centage of TFs is higher in the latter: 13% for genes linked
to at least two traits, and 15% for genes linked to at least
four traits. The preference for TFs to be associated with
traits is in line with the fact that in our input set of gene
function predictions for rice, TFs obtain approximately
twofold higher number of associated biological processes
compared to other genes (not shown). This important role
of TFs could explain the fact that QTLs associate prefer-
entially with large-effect mutations [60].
In addition to the overall higher number of transcrip-

tion factors among the prioritized candidate genes, there
are also clearly different types of transcription factors as-
sociated with specific traits (Figure 3). For several of
these associations evidence exists in the literature. For
example, the trait chlorophyll content is associated by
our analysis with MICK MADS domain transcription
factors; this is in line with the fact that targets of the to-
mato MADS TF RIN are involved in chlorophyll degrad-
ation [61]. The traits blast disease resistance and leaf
angle are associated with NAC transcription factors by
our analysis; experimental evidence indicates that these
TFs are indeed involved in pathogen responses [62] and
epresented biological processes involved
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and phloem pattern formation; signal transduction by phosphorylation

r response to ethylene stimulus

e regulation of macromolecule biosynthetic process/nitrogen compound
olic process/gene expression
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QTL regions for the trait for which validation is available based on literature



Figure 3 Transcription factors as potentially causal genes.
Specific TF families (horizontal axis) were found associated with specific
traits (vertical axis). Heatmap shows which percentage of the associated
TFs belongs to various TF subfamilies for traits with at least ten
associated TFs, and at least one TF subfamily which constitutes more
than 25% of all associated TFs for that trait. Only TF subfamilies which
for at least one trait constituted more than 25% of all TFs, are shown.
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in waterlogging-induced upward bending of leaves [63].
Finally, the trait tiller number is associated with ERF tran-
scription factors, and indeed the rice ERF TF OsEATB is
known to be involved in regulation of tillering [64]. This
preference of particular types of TFs to be relevant for
specific traits will be useful in further prioritization of can-
didate genes for such traits.

Example: analysis of QTL regions for the trait days
to heading
To illustrate the added value for plant biology, we con-
sidered the trait days to heading in depth. Days to head-
ing, which is related to the trait flowering time, is an
important parameter for rice breeding [65,66] and plays
a key role in adaptation of rice to different environments
[67]. In Figure 4A the number of genes prioritized is
plotted, either divided per QTL region (main) or in all
QTL regions together (insert). The various terms ob-
tained for this trait are depicted in Figure 4B. Here, the
position of each biological process term is chosen to rep-
resent similarities between the terms [68]. The overrep-
resented biological process occurring for the largest
number of genes for this trait is ? regulation of multicel-
lular organismal development ? . This term, although quite
general, is obviously relevant for days to heading. An-
other relevant selected term was ?cellular response to
ethylene stimulus ? ; an ethylene receptor is known to
delay the floral transition in rice [69]. A third clearly
relevant term was ? regulation of flower development ? .
We analyzed the genes associated with this term in more
detail. From 7,113 genes in the rice QTL regions linked
with the trait days to heading, 79 genes were assigned to
the term ? regulation of flower development ? by our func-
tion annotation (Additional file 3: Table S5) and hence
prioritized as potentially causal genes for this trait by
our method. Of these 79 genes some are described as
? unknown ? by existing annotations (Additional file 3:
Table S5). For example, gene LOC_Os04g54420 is anno-
tated as containing a domain of unknown function
(DUF618). Such genes could not have been prioritized
based on existing annotations, which illustrates the im-
portance of using our set of computational gene func-
tion predictions as input. To have a closer look at the
genes prioritized for the trait days to heading based on
the BP ? regulation of flower development ? we focused on
the genes that in the QTL region in which they occur
were the only gene associated with this BP. Given the
relevance of the BP ? regulation of flower development ?
for the trait days to heading, the occurrence of only one
gene annotated with that BP term in a QTL region for
this trait makes that gene a prime candidate for further
study. There are in total 11 of such genes (Table 4). Ana-
lysis of the existing Rice Genome Annotation Project
data [70] for these genes indicates that some are known to
be involved in flower development. This includes two
MADS genes, OsMADS34, involved in inflorescence and
spikelet formation [71], and OsMADS18, involved in spe-
cifying floral determinacy and organ identity [72]. Several
other genes are however not characterized at all and
should therefore be considered new potentially causal
genes involved in the regulation of flowering time. This in-
cludes a MYB transcription factor and two zinc finger do-
main containing proteins. In line with the preference for
TFs among prioritized candidate genes, the set of 11 genes
contains 5 TFs: the three mentioned above (2x MADS, 1x
MYB) as well as two GATATFs.
Among the biological processes associated with the

trait days to heading, the related processes ? ribonucleo-
protein complex biogenesis ? and ? ribosome biogenesis ?
had only low similarity to other biological processes associ-
ated with this trait; this is indicated by their position rela-
tive to other terms in Figure 4B. In total, 72 genes involved
in these two biological processes are prioritized as poten-
tially causal genes for days to heading (Additional file 3:
Table S6). Although a role of the ribosome in flowering
time has not been described in great detail, circumstantial
evidence in the literature suggests that the ribosome
might indeed be important. In particular, TOR kinase
which mediates ribosomal biogenesis, regulates flower-
ing and senescence in Arabidopsis [73]. In maize, a protein
involved in translation initiation has been confirmed as
underlying a flowering time QTL [74], and in Solanum
chacoense, a protein involved in ribosome biogenesis influ-
enced flowering [75].
These examples show how the approach taken to link

traits with biological processes and subsequently to
genes can generate relevant leads for future laboratory
experimentation.



Figure 4 Analysis of QTL regions for rice trait days to heading. (A) Overview of prioritization results per QTL region. Each pair of horizontal
bars indicates a QTL region; the black bar represents the total number of genes in the region, and the green bar the number of prioritized
(potentially causal) genes. Inset: pie-diagram indicates the total number of genes (7113), and the fraction of those genes selected by the
prioritization approach (579). (B) Overview of selected biological processes: REVIGO [68] scatterplot view in which each circle represents a BP; the
distance between circles indicates similarity between BPs.
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Discussion
In order to exploit the information hidden in plant genom-
ics data for breeding, better understanding of genotype-to-
phenotype relationships is essential. The biological and mo-
lecular basis of most quantitative trait variation is poorly
understood and QTL mapping approaches generally result
in too large numbers of candidate genes to be able to
Table 4 Genes predicted as causal genes for days to
headinga

Gene Available existing annotation

LOC_Os01g68620 signal peptide peptidase-like 2B

LOC_Os01g70920 cullin-1

LOC_Os01g74020 MYB family transcription factor

LOC_Os03g54170 OsMADS34 - MADS-box family
gene with MIKCc type-box

LOC_Os03g61570 expressed protein

LOC_Os05g02300 Core histone H2A/H2B/H3/H4
domain containing protein

LOC_Os07g41370 OsMADS18 - MADS-box family
gene with MIKCc type-box

LOC_Os07g46180 PWWP domain containing protein

LOC_Os07g08880 ES43 protein

LOC_Os09g39270 ZOS9-20 - C2H2 zinc finger protein

LOC_Os10g40810 GATA zinc finger domain
containing protein

aGenes prioritized in QTL regions for trait days to heading based on their
predicted function ? regulation of flower development? , and present as single gene
annotated with this term in the respective QTL region. Without the last
requirement, in total 79 genes were prioritized in the QTL regions for this trait
based on the BP ? regulation of flower development? (Additional file 3: Table S5).
identify causal genes easily. The prioritization of candidate
genes is not only of fundamental interest, but also of high
practical value, because causal genes for any trait-of-
interest make perfect markers for breeding. Our results
demonstrate that associations between overrepresented
biological processes and traits help to prioritize candidate
genes and zoom in on the potentially causal genes for the
trait-of-interest. Our integrated analysis is the first large-
scale application assessing explicitly the performance of
overrepresentation of predicted gene functions for the
identification of potentially causal genes for plant traits in
genomic regions obtained by QTL mapping.
Our approach resulted in a reduction in total number

of genes of more than ten-fold compared to the number
of genes in the input QTL regions. Based on comparison
with different experimental datasets, the predicted causal
genes are clearly statistically significant. Although we
could only compare the prioritized genes with a limited
number of fine-mapped genes available in literature, our
predictions enable to test potentially causal genes under-
lying QTLs at a larger scale. This paves the way towards
obtaining more detailed insight into the role of specific
genes underlying QTLs which in turn should enable fur-
ther validation of our predictions in the future. As dem-
onstrated by the example of genes prioritized for days to
heading, included in the set of prioritized genes are
genes with so far completely unknown function. Such
genes will be particularly interesting targets for experi-
mental verification.
Out of 179 traits, for 26 no predictions were obtained.

It could be that for some of these 26 traits, causal genes
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underlying different QTL regions are not involved in the
same biological process. If indeed for each QTL region
for a trait-of-interest a different biological process would
be underlying, our enrichment analysis would not be able
to predict these biological processes. However, for ~30%
(8 of 26) of these traits only one QTL region was available,
two times the percentage of traits with only one QTL re-
gion observed overall (~15%). This indicates that traits
with multiple QTL regions are more likely to indeed con-
tain overrepresented BPs. In other words, the analysis of
overrepresented BPs profits from the availability of mul-
tiple QTL regions. This is in line with the above men-
tioned assumption underlying our prioritization method,
that multiple QTL regions for a trait reflect variation in
genes involved in the same biological process. Taken to-
gether, our results clearly indicate that this assumption is
often correct.
We found that transcription factors are prominently

present among the prioritized candidate genes. This points
towards an explanation for the fact that QTL studies prefer-
ably find large effect mutations [60]. It may also emphasize
the important role of transcription factors in domestication.
Half to two-third of genes known to be involved in domes-
tication consist of transcription factors [76,77] and many of
the traits important for breeding are relevant in the context
of domestication [78].
The input needed for prioritization as here developed

consists of QTL regions and predicted gene functions.
Incorporating the significance level of the association of
genome regions with a trait using QTL Logarithm Of
the Odds (LOD) scores could improve the analysis as
could better assessment of the overrepresentation of bio-
logical process terms using e.g. gene set enrichment ana-
lysis [79], iterative group analysis [80], or approaches
that take the hierarchy of the Gene Ontology into ac-
count [81]. Yet, in such enrichment analysis the import-
ance of the source of the gene function annotations is
often underestimated. Especially in case of agricultural
crops, knowledge of what all the genes predicted to be
present in the genome are actually doing, is scarce [82].
For example, existing databases describing rice gene
functions only contain relatively small number of cases
[59,83]. Having a large set of high-quality gene function
predictions [34] results in much higher numbers of sig-
nificant associations between traits and biological pro-
cesses compared to using existing annotations.

Conclusions
The set of potentially causal genes that results from the
prioritization approach here demonstrated could be an
important dataset for future applications in rice breed-
ing. Other crops as well as relevant animal species could
be addressed in a similar way. It may motivate research
communities to generate the data necessary for such
analyses. QTL data are available for various plant species
and we generated sets of high-quality biological process
predictions for different plant species, including major
crops [34]. In the future it should be possible to analyze
data from various species simultaneously to find over-
represented biological processes among QTL regions
linked to the same trait in different species. Such com-
parative approach will help to extract more useful infor-
mation from available data in order to elucidate and
exploit the link between genotype and phenotype.
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