55 research outputs found

    Stochastic model for nucleosome sliding in the presence of DNA ligands

    Full text link
    Heat-induced mobility of nucleosomes along DNA is an experimentally well-studied phenomenon. A recent experiment shows that the repositioning is modified in the presence of minor-groove binding DNA ligands. We present here a stochastic three-state model for the diffusion of a nucleosome along DNA in the presence of such ligands. It allows us to describe the dynamics and the steady state of such a motion analytically. The analytical results are in excellent agreement with numerical simulations of this stochastic process.With this model, we study the response of a nucleosome to an external force and how it is affected by the presence of ligands.Comment: 10 pages, 8 figures, submitted to Eur. Phys. J.

    The combination effects of trivalent gold ions and gold nanoparticles with different antibiotics against resistant Pseudomonas aeruginosa

    Full text link
    Despite much success in drug design and development, Pseudomonas aeruginosa is still considered as one of the most problematic bacteria due to its ability to develop mutational resistance against a variety of antibiotics. In search for new strategies to enhance antibacterial activity of antibiotics, in this work, the combination effect of gold materials including trivalent gold ions (Au ) and gold nanoparticles (Au NPs) with 14 different antibiotics was investigated against the clinical isolates of P. aeruginosa, Staphylococcus aureus and Escherichia coli. Disk diffusion assay was carried out, and test strains were treated with the sub-inhibitory contents of gold nanomaterial. Results showed that Au NPs did not increase the antibacterial effect of antibiotics at tested concentration (40 μg/disc). However, the susceptibility of resistant P. aeruginosa increased in the presence of Au and methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid, up to 147 %. As an individual experiment, the same group of antibiotics was tested for their activity against clinical isolates of S. aureus, E. coli and a different resistant strain of P. aeruginosa in the presence of sub-inhibitory contents of Au , where Au increased the susceptibility of test strains to methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid. Our finding suggested that using the combination of sub-inhibitory concentrations of Au and methicillin, erythromycin, nalidixic acid or vancomycin may be a promising new strategy for the treatment of highly resistant P. aeruginosa infections

    Immune modulation by curcumin: The role of interleukin-10.

    No full text
    Cytokines are small secreted proteins released by different types of cells with specific effects on cellular signaling and communication via binding to their receptors on the cell surface. IL-10 is known to be a pleiotropic and potent anti-inflammatory and immunosuppressive cytokine that is produced by both innate and adaptive immunity cells including dendritic cells, macrophages, mast cells, natural killer cells, eosinophils, neutrophils, B cells, CD8+ T cells, and TH1, TH2, and TH17 and regulatory T cells. Both direct and indirect activation of the stress axis promotes IL-10 secretion. IL-10 deregulation plays a role in the development of a large number of inflammatory diseases such as neuropathic pain, Parkinson's disease, Alzheimer's disease, osteoarthritis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus, type 1 diabetes, inflammatory bowel disease, and allergy. Curcumin is a natural anti-inflammatory compound able to induce the expression and production of IL-10 and enhancing its action on a large number of tissues. In vitro and in pre-clinical models curcumin is able to modulate the disease pathophysiology of conditions such as pain and neurodegenerative diseases, bowel inflammation, and allergy, but also of infections and cancer through its effect on IL-10 secretion. In humans, at least one part of the positive effects of curcumin on health could be related to its ability to enhance IL-10 -mediated effects

    Effects of statins on brain tumors: a review.

    No full text
    Evidence from preclinical studies suggests that the competitive HMG-CoA reductase (HMGCR) inhibitors universally known as 'statins,' in addition to being powerful drugs that reduce cholesterol and improve cardiovascular risk, also have promising antitumor properties. Statins appear to enhance the treatment outcome of various cancers before and concurrent with other cancer treatment interventions. Glioblastoma multiforme (GBM), a particularly invasive cerebral tumor associated with high mortality, holds a poor median overall survival (OS) of around one year after surgical resection followed by concurrent radiation and chemotherapy. Recently, statins have increasingly appeared as potential adjuvant drugs for the treatment of GBM because of their potential to suppress cell growth, survival, migration, metastasis, inflammation, angiogenesis, and promote apoptosis during both in vitro and in vivo studies. However, the clinical outcomes of statins on the survival of patients with GBM are still controversial. This study aims to review and address some of the documented effects of statin drugs when focusing entirely on cancer treatment, especially GBM, including concurrent statin therapy with chemotherapeutic agents

    Sudden cardiac death in COVID-19 patients, a report of three cases

    No full text
    The mortality rate of coronavirus disease-19 (COVID-19) has been reported as 1-6 in most studies. The cause of most deaths has been acute pneumonia. Nevertheless, it has been noted that cardiovascular failure can also lead to death. Three COVID-19 patients were diagnosed based on reverse transcriptase-polymerase chain reaction of a nasopharyngeal swab test and radiological examinations in our hospital. The patients received medications at the discretion of the treating physician. In this case series, chest computed tomography scans and electrocardiograms, along with other diagnostic tests were used to evaluate these individuals. Sudden cardiac death in COVID-19 patients is not common, but it is a major concern. So, it is recommended to monitor cardiac condition in selected patients with COVID-19

    Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers

    No full text
    Gynecologic cancer is a group of any malignancies affecting reproductive tissues and organs of women, including ovaries, uterine, cervix, vagina, vulva, and endometrium. Several types of molecular mechanisms are associated with the progression of gynecologic cancers. Among it can be referred to the most widely studied non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long ncRNAs (lncRNAs). As yet, lncRNAs are known to serve key biological roles via various mechanisms, such as splicing regulation, chromatin rearrangement, translation regulation, cell-cycle control, genetic imprinting and mRNA decay. Besides, miRNAs govern gene expression by modulation of mRNAs and lncRNAs degradation, suggestive of needing more research in this field. Generally, driving gynecological cancers pathways by miRNAs and lncRNAs lead to the current improvement in cancer-related technologies. Exosomes are extracellular microvesicles which can carry cargo molecules among cells. In recent years, more studies have been focused on exosomal non-coding RNAs (exo-ncRNAs) and exosomal microRNAs (exo-miRs) because of being natural carriers of lnc RNAs and microRNAs via programmed process. In this review we summarized recent reports concerning the function of exosomal microRNAs and exosomal long non-coding RNAs in gynecological cancers. © 2021 Elsevier Inc
    corecore