68 research outputs found

    Testing Multiple Coordination Constraints with a Novel Bimanual Visuomotor Task

    Get PDF
    The acquisition of a new bimanual skill depends on several motor coordination constraints. To date, coordination constraints have often been tested relatively independently of one another, particularly with respect to isofrequency and multifrequency rhythms. Here, we used a new paradigm to test the interaction of multiple coordination constraints. Coordination constraints that were tested included temporal complexity, directionality, muscle grouping, and hand dominance. Twenty-two healthy young adults performed a bimanual dial rotation task that required left and right hand coordination to track a moving target on a computer monitor. Two groups were compared, either with or without four days of practice with augmented visual feedback. Four directional patterns were tested such that both hands moved either rightward (clockwise), leftward (counterclockwise), inward or outward relative to each other. Seven frequency ratios (3∶1, 2∶1, 3∶2, 1∶1, 2∶3. 1∶2, 1∶3) between the left and right hand were introduced. As expected, isofrequency patterns (1∶1) were performed more successfully than multifrequency patterns (non 1∶1). In addition, performance was more accurate when participants were required to move faster with the dominant right hand (1∶3, 1∶2 and 2∶3) than with the non-dominant left hand (3∶1, 2∶1, 3∶2). Interestingly, performance deteriorated as the relative angular velocity between the two hands increased, regardless of whether the required frequency ratio was an integer or non-integer. This contrasted with previous finger tapping research where the integer ratios generally led to less error than the non-integer ratios. We suggest that this is due to the different movement topologies that are required of each paradigm. Overall, we found that this visuomotor task was useful for testing the interaction of multiple coordination constraints as well as the release from these constraints with practice in the presence of augmented visual feedback

    Dual practice in the health sector: review of the evidence

    Get PDF
    This paper reports on income generation practices among civil servants in the health sector, with a particular emphasis on dual practice. It first approaches the subject of public–private overlap. Thereafter it focuses on coping strategies in general and then on dual practice in particular. To compensate for unrealistically low salaries, health workers rely on individual coping strategies. Many clinicians combine salaried, public-sector clinical work with a fee-for-service private clientele. This dual practice is often a means by which health workers try to meet their survival needs, reflecting the inability of health ministries to ensure adequate salaries and working conditions. Dual practice may be considered present in most countries, if not all. Nevertheless, there is surprisingly little hard evidence about the extent to which health workers resort to dual practice, about the balance of economic and other motives for doing so, or about the consequences for the proper use of the scarce public resources dedicated to health. In this paper dual practice is approached from six different perspectives: (1) conceptual, regarding what is meant by dual practice; (2) descriptive, trying to develop a typology of dual practices; (3) quantitative, trying to determine its prevalence; (4) impact on personal income, the health care system and health status; (5) qualitative, looking at the reasons why practitioners so frequently remain in public practice while also working in the private sector and at contextual, personal life, institutional and professional factors that make it easier or more difficult to have dual practices; and (6) possible interventions to deal with dual practice

    Communication Balancing in . . . MULTIPLICATION

    No full text
    Given a partitioning of a sparse matrix for parallel matrix–vector multiplication, which determines the total communication volume, we try to find a suitable vector partitioning that balances the communication load among the processors. We present a new lower bound for the maximum communication cost per processor, an optimal algorithm that attains this bound for the special case where each matrix column is owned by at most two processors, and a new heuristic algorithm for the general case that often attains the lower bound. This heuristic algorithm tries to avoid raising the current lower bound when assigning vector components to processors. Experimental results show that the new algorithm often improves upon the heuristic algorithm that is currently implemented in the sparse matrix partitioning package Mondriaan. Trying both heuristics combined with a greedy improvement procedure solves the problem optimally in most practical cases. The vector partitioning problem is proven to be NP-complete

    tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task

    No full text
    Previously, transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has resulted in improved performance in simple motor tasks. For a complex bimanual movement, studies using functional magnetic resonance imaging and transcranial magnetic stimulation indicated the involvement of the left dorsolateral prefrontal cortex (DLPFC) as well as left M1. Here we investigated the relative effect of up-regulating the cortical function in left DLPFC and left M1 with tDCS. Participants practised a complex bimanual task over four days while receiving either of five stimulation protocols: anodal tDCS applied over M1, anodal tDCS over DLPFC, sham tDCS over M1, sham tDCS over DLPFC, or no stimulation. Performance was measured at the start and end of each training day to make a distinction between acquisition and consolidation. Although task performance improved over days, no significant difference between stimulation protocols was observed, suggesting that anodal tDCS had little effect on learning the bimanual task regardless of the stimulation sites and learning phase (acquisition or consolidation). Interestingly, cognitive performance as well as corticomotor excitability did not change following stimulation. Accordingly, we found no evidence for behavioural or neurophysiological changes following tDCS over left M1 or left DLPFC in learning a complex bimanual task
    • …
    corecore