1,434 research outputs found

    Error distributions on large entangled states with non-Markovian dynamics

    Get PDF
    We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten of errors occurs has a bound of Markovian form, and thus accuracy threshold theorems based on Markovian models should be just as effective. This is the case, for example, for a charged quantum dot emitter in a moderate to strong magnetic field. Beyond the pure-dephasing assumption, though complicated error structures can arise, they can still be qualitatively bounded by a Markovian error model.Comment: Close to published versio

    Model of the optical emission of a driven semiconductor quantum dot: phonon-enhanced coherent scattering and off-resonant sideband narrowing

    Get PDF
    We study the crucial role played by the solid-state environment in determining the photon emission characteristics of a driven quantum dot. For resonant driving, we predict a phonon-enhancement of the coherently emitted radiation field with increasing driving strength, in stark contrast to the conventional expectation of a rapidly decreasing fraction of coherent emission with stronger driving. This surprising behaviour results from thermalisation of the dot with respect to the phonon bath, and leads to a nonstandard regime of resonance fluorescence in which significant coherent scattering and the Mollow triplet coexist. Off-resonance, we show that despite the phonon influence, narrowing of dot spectral sideband widths can occur in certain regimes, consistent with an experimental trend.Comment: Published version. 5 pages, 2 figures, plus 4 page supplement. Title changed, figure 1 revised, various edits and additions to the tex

    Coherent and incoherent dynamics in excitonic energy transfer: correlated fluctuations and off-resonance effects

    Full text link
    We study the nature of the energy transfer process within a pair of coupled two-level systems (donor and acceptor) subject to interactions with the surrounding environment. Going beyond a standard weak-coupling approach, we derive a master equation within the polaron representation that allows for investigation of both weak and strong system-bath couplings, as well as reliable interpolation between these two limits. With this theory, we are then able to explore both coherent and incoherent regimes of energy transfer within the donor-acceptor pair. We elucidate how the degree of correlation in the donor and acceptor fluctuations, the donor-acceptor energy mismatch, and the range of the environment frequency distribution impact upon the energy transfer dynamics. In the resonant case (no energy mismatch) we describe in detail how a crossover from coherent to incoherent transfer dynamics occurs with increasing temperature [A. Nazir, Phys. Rev. Lett. 103, 146404 (2009)], and we also explore how fluctuation correlations are able to protect coherence in the energy transfer process. We show that a strict crossover criterion is harder to define when off-resonance, though we find qualitatively similar population dynamics to the resonant case with increasing temperature, while the amplitude of coherent population oscillations also becomes suppressed with growing site energy mismatch.Comment: 14 pages, 7 figures, builds upon PRL 103, 146404 (2009) (arXiv:0906.0592). Comments welcome. V2 - Section IV shortened to improve presentation, references updated, new Imperial College affiliation added for A. Nazir. Published versio

    Long-lived spin entanglement induced by a spatially correlated thermal bath

    Full text link
    We investigate how two spatially separated qubits coupled to a common heat bath can be entangled by purely dissipative dynamics. We identify a dynamical time scale associated with the lifetime of the dissipatively generated entanglement and show that it can be much longer than either the typical single-qubit decoherence time or the time scale on which a direct exchange interaction can entangle the qubits. We give an approximate analytical expression for the long-time evolution of the qubit concurrence and propose an ion trap scheme in which such dynamics should be observable.Comment: 5 pages, 2 figure

    A biological survey of the Rappahannock River, Virginia

    Get PDF
    Also part of series: Special report from the Virginia Fisheries Laboratory ; no.6.Also referred to as the Rappahannock River Survey

    The laws of physics do not prohibit counterfactual communication

    Get PDF
    It has been conjectured that counterfactual communication is impossible, even for post-selected quantum particles. We strongly challenge this by proposing precisely such a counterfactual scheme where—unambiguously—none of Alice’s photons that correctly contribute to her information about Bob’s message have been to Bob. We demonstrate counterfactuality experimentally by means of weak measurements, and conceptually using consistent histories—thus simultaneously satisfying both criteria without loopholes. Importantly, the fidelity of Alice learning Bob’s bit can be made arbitrarily close to unity

    Separation-dependent localization in a two-impurity spin-boson model

    Full text link
    Using a variational approach we investigate the delocalized to localized crossover in the ground state of an Ohmic two-impurity spin-boson model, describing two otherwise non-interacting spins coupled to a common bosonic environment. We show that a competition between an environment-induced Ising spin interaction and externally applied fields leads to variations in the system-bath coupling strength, αc\alpha_c, at which the delocalized-localized crossover occurs. Specifically, the crossover regime lies between αc=0.5\alpha_c=0.5 and αc=1\alpha_c=1 depending upon the spin separation and the strength of the transverse tunneling field. This is in contrast to the analogous single spin case, for which the crossover occurs (in the scaling limit) at fixed αc≈1\alpha_c\approx1. We also discuss links between the two-impurity spin-boson model and a dissipative two-spin transverse Ising model, showing that the latter possesses the same qualitative features as the Ising strength is varied. Finally, we show that signatures of the crossover may be observed in single impurity observables, as well as in the behaviour of the system-environment entanglement.Comment: 12 pages, 9 figures. Published version. Expanded discussion of the distance dependence between the impurities, and added a related figur

    Consistent treatment of coherent and incoherent energy transfer dynamics using a variational master equation

    Get PDF
    We investigate the energy transfer dynamics in a donor-acceptor model by developing a time-local master equation technique based on a variational transformation of the underlying Hamiltonian. The variational transformation allows a minimisation of the Hamiltonian perturbation term dependent on the system parameters, and consequently results in a versatile master equation valid over a range of system-bath coupling strengths, temperatures, and environmental spectral densities. While our formalism reduces to the well-known Redfield, Foerster and polaron forms in the appropriate limits, in general it is not equivalent to perturbing in either the system-environment or donor-acceptor coupling strengths, and hence can provide reliable results between these limits as well. Moreover, we show how to include the effects of both environmental correlations and non-equilibrium preparations within the formalism.Comment: 13 pages, 6 figures, comments welcome. Published version, minor changes to text, references adde
    • …
    corecore