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We investigate the energy transfer dynamics in a donor-acceptor model by developing a time-local
master equation technique based on a variational transformation of the underlying Hamiltonian. The
variational transformation allows a minimisation of the Hamiltonian perturbation term dependent on
the system parameters, and consequently results in a versatile master equation valid over a range of
system-bath coupling strengths, temperatures, and environmental spectral densities. While our for-
malism reduces to the well-known Redfield, Forster and polaron forms in the appropriate limits, in
general it is not equivalent to perturbing in either the system-environment or donor-acceptor cou-
pling strengths, and hence can provide reliable results between these limits as well. Moreover, we
show how to include the effects of both environmental correlations and non-equilibrium preparations
within the formalism. © 2011 American Institute of Physics. [doi:10.1063/1.3636081]

. INTRODUCTION

The transfer of an electronic excitation is a ubiquitous
process in physics, chemistry, and biology. Typically, cou-
pling to the radiation field creates an excitation in one loca-
tion (the donor), and through the exchange of a virtual pho-
ton, the excitation is passed to another (the acceptor).! One of
the many challenges in theoretically modelling such a process
lies in correctly accounting for the influence of the environ-
ment surrounding the two (or more) sites, which determines
whether the transfer is of a coherent or an incoherent nature. A
common approach has been to assume that the energy transfer
coupling strength is weak and thus perform perturbation the-
ory in this parameter. The resulting Forster-Dexter rate equa-
tions then describe purely incoherent energy transfer3 and
are applicable in a wide variety of situations.*> However, re-
cent experimental results providing evidence for quantum co-
herent transfer in a number of systems®'# have necessitated
the development of theoretical techniques beyond this approx-
imation. While extending Forster theory to account for co-
herence within multi-site donors or acceptors is possible,'>~!7
describing the dynamical evolution of coherences between the
donor and acceptor generally requires an alternative starting
point.

One such approach is to treat the system-environment
coupling perturbatively, while accounting for the electronic
coupling between the sites to all orders. Working with the
resulting Redfield or Lindblad equations is vastly simpler
than simulating the full dynamics'® and has thus recently
been put to great effect to analyse the interplay of dissipa-
tion and quantum coherence in the energy transfer dynamics
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of complex, many-site systems.'°=" However, by their very
nature, treatments based upon a weak system-environment
coupling assumption are often inadequate to describe sys-
tems strongly coupled to their environments and/or at high
temperatures.>'=3* In this situation, there exists a number
of (non-perturbative) numerical approaches which allow one
to explore the full range of system-bath coupling and elec-
tronic transfer strengths, subject to certain method-specific
constraints. Examples include density matrix renormalisa-
tion group,’ numerical renormalisation group,’® and path
integral®”>3® methods. Additionally, for specific forms (but not
strengths) of system-environment coupling, numerically exact
results can be obtained through the hierarchical equations of
motion technique,’*3°**? which has recently been shown to
be consistent with the path integral formalism.*}

These methods have clear advantages in that their range
of applicability is generally less restricted than those of the
aforementioned perturbative approaches. However, given the
physical insight perturbative techniques can impart, and the
relative simplicity and efficiency with which they can be im-
plemented, it remains of particular importance to develop
approximation methods which allow one to probe as wide
a range of parameter regimes as possible. For example, as-
pects of energy transfer dynamics have recently been ex-
plored using a time-local polaron-transform master equation
technique,***° which corresponds to perturbation theory in an
environment-dressed electronic coupling term.’*-? For par-
ticular forms of the system-environment coupling, the po-
laron master equation reduces to Redfield theory in the weak-
coupling limit, but also remains valid for far greater tempera-
tures and system-bath coupling strengths,**>33% and can thus
also capture the Forster limit. This allows, in particular, for
a consistent exploration of the crossover from coherent to
incoherent dynamics in energy transfer processes.***® The
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polaron method, however, suffers itself from a restriction to
relatively small electronic coupling strengths (compared to
typical frequencies in the environment) and, as mentioned,
can only interpolate between the Redfield and Forster limits
for certain forms of system-environment coupling.

In this work, we go beyond the polaron approach and
present a master equation technique which combines a varia-
tionally optimised unitary transformation®>~° with the time-
convolutionless projection operator formalism.'® Modelling
the environment as a bath of harmonic oscillators, the vari-
ational transformation displaces each mode according to the
position of the excitation, and by an amount defined to min-
imise the resulting free energy of the interaction terms be-
tween the donor-acceptor pair and the environment. We con-
trast the resulting time-local master equation with the Red-
field and polaron forms and show that the variational approach
is superior to both. Specifically, we show that while the vari-
ational master equation reproduces both the Redfield and po-
laron equations in the appropriate limits, it can also give qual-
itatively reliable results outside these parameter regimes. The
variational master equation can, therefore, be used to explore
energy transfer dynamics for a range of system-environment
coupling forms, strengths, and environmental temperatures.

The paper is organised as follows: In Sec. II we
introduce the donor-acceptor model and the variational
transformation. We then outline the derivation of the time-
local master equation in Sec. III. In Sec. IV, we use this mas-
ter equation to explore the influence of both super-Ohmic and
Ohmic environments on the donor-acceptor energy transfer
dynamics. We also consider here the role of bath relaxation
effects, and how they influence the rate of energy transfer.
A brief summary is presented in Sec. V, while Appendix A
gives further details of the master equation derivation and
Appendix B extends the formalism to consider correlated en-
vironmental fluctuations.?® 38-44:48,60-65

Il. MODEL AND VARIATIONAL TRANSFORMATION

We consider a donor-acceptor pair (j = 1, 2) each site of
which we model as a two-level system with ground state |G)
and excited state |X), split by an energy 7€ ;. The pair interact
via an electronic coupling of strength V' which transfers an
excitation from one site to the other. To model the dephasing
and dissipative effects of the environment, we linearly couple
each excited state to a bath of harmonic oscillators.366:67 Al-
though not the primary focus of this work, the formalism to be
presented below can also been extended to include the effects
of correlated fluctuations between the sites.**+*% This exten-
sion is outlined in Appendix B. In the absence of correlations,
the total Hamiltonian reads (we set % = 1),

H = Z € 1X) (X + VIXGHGX| + [GXNKXG])
j=12

+ Y IXHXIY g+ b+ He o (1)

j=12 k
where |X)(X] = |X)X| ® (IXXX]| + |GXG]) and [X),(X]|
= (I XXX|+|1G)G]) ® | X){X| determine the excited state
populations of the two sites, g ; is the coupling constant
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of site j to mode k of bath j, described by creation (anni-
hilation) operators b,:j (b, ;). The bath Hamiltonian is Hp
=2 a)k,jb}:,jbk,j, with frequencies wy ;. Equation (1)
generates excitation dynamics within the three decoupled sub-
spaces, spanned by {|GG), {|XG),|GX)}, |XX)}. We are
interested here in the single-excitation subspace (spanned
by {|XG),|GX)}) and therefore set |[XG) = |1) and |GX)
= |2), and write the Hamiltonian governing dynamics within
this subspace as

€
Hgyg = EO'Z + Vo, + Hp

+ YN bl by @)

j=12 k

Here, € = €] — ¢, is the energetic difference between the two
sites, the Pauli operators are defined in the basis o, = |1)(1]
— |2){2|, and a term proportional to the identity has been
neglected.

A standard way to proceed from this point might be to
treat the system-bath interaction term in Eq. (2) as a pertur-
bation, resulting in a master equation of Lindblad or Redfield
type.'® Alternatively, a polaron transformation could first be
applied to Eq. (2), allowing one to identify a new interaction
term, and resulting in a master equation of the form explored
in Refs. 44-48. Here, we instead employ a method originally
developed by Silbey and Harris and apply a variational trans-
formation to Hsyg.””>® As in the polaron case, the transfor-
mation displaces those modes in the bath coupled to the site
possessing the excitation. However, unlike the full polaron
transformation, we allow freedom within the variational trans-
formation to attempt to optimise these displacements for each
mode. This will be achieved through free energy minimisation
arguments.“‘58

The transformed Hamiltonian is
=eC HSUBG_G, with

defined by Hr

o f.j
G= ; 1)1 ; Jj(”z = b)) 3)

This results in Hr = Hy + H;, with free Hamiltonian

Hy = 3(€ + R| — Ry)o; + Vgo, + Hp + 3(Ri + Ry)1L,
“)
where R; =, fi. ja)kf}( Jr.j — 28k, ), and the renormalised
electronic coupling strength Vi will be defined below.
The interaction Hamiltonian now contains two terms, H;
= HLINEAR + HDISPLACED, Wlth the ﬁI'St given by

Himear = Y 101D (8kj = fe )bl +bej). ()
j k

which has the same form as the perturbative term in Red-
field theory, but with the coupling to each mode now reduced
in strength. Notice that if we were to set f; ; = gi,; for all
modes, as in the full polaron transformation, Hygar would
vanish as expected, though in general this is not the case. The
second term in H; has the form of the perturbation used in
deriving a polaron master equation, and is given by

HpispLacep = V(0 By + 0, B,), (6)
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written in terms of the Hermitian combinations B,
= (1/2)(B+ + B_ —2B) and By = (i/2)(B+ — B_) of the
bath displacement operators operators By = By 1By, with

By, =exp |::t > %(b; = b ,)] . (7)
k s

Again, it is important to note that only in the particular case
of fr,j = g, (for all modes) does Eq. (6) become identical
to the polaron form.

Going back to the free Hamiltonian, we see that the term
generating the energy transfer in Eq. (4) now appears with
a renormalised strength; Vg = V B, with B = Tr(B1pp) be-
ing the expectation value of By with respect to the bath state.
Taking a thermal equilibrium state pg = e ### /(Tre=#Hr) at
inverse temperature 8 = 1/kpT gives explicitly

B_ 1 1 h Bk, j 3
= exp _EZZECN T . (8)
j ok J

If we now assume that the baths coupled to the donor
and acceptor are identical, this allows us to set gx.| = gk.2
=8k k1= k2=, fi1= fio=fr, and Ry =Ry
=R=), fkwk_l( fr —2gr). The free Hamiltonian now
takes on the simpler form

Ho = 0.+ Vio, + RL+ Hy. ©)
while the renormalisation factor becomes
N 1
B=exp|— E =5 coth(Bawy/2) | . (10)
w
k k

A. Free energy minimisation

Currently, the parameters {f;} appearing in our trans-
formed Hamiltonian are undetermined. We note that set-
ting f; = 0 corresponds to having performed no transforma-
tion on the Hamiltonian, and as such Hpspracep = O while
HypNgAR remains finite, and the Hamiltonian takes on its orig-
inal spin-boson form.?® On the other hand, as remarked ear-
lier, by setting f; = gi for all k one finds that Hyjngar = 0
while Hpispracep remains finite. In this case, the Hamilto-
nian corresponds to that of a polaron transformed spin-boson
model.*+4-48:33 Our aim in this work is to attempt to derive a
second-order (time-local) master equation valid over as large
a range of parameter space as possible. We achieve this by
trying to find an interaction Hamiltonian which remains small
over the greatest range of parameters. Therefore, rather than
setting fr = 0 or fy = g, we instead determine the set { fi}
by free energy minimisation arguments.

To proceed, we compute the Feynman-Bogoliuobov up-
per bound on the free energy,”’>® given by

1
Ap = B In(Tr{e™"™) + (Hpw, + O((Hf), ). (D)

and related to the true free energy, A, via the inequality
Ap > A% By construction, the second term appearing in
Eq. (11) is equal to zero. The variational transformation does
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not affect the value of the free energy of the complete system;
in order to minimise the contribution from H;, we therefore
neglect the third term in Eq. (11) and minimise (or maximise
in magnitude) the first term with respect to the variational pa-
rameters. We find

Ap=R— %ln[Zcosh(ﬂnﬂ)], (12)

with 7 = /€2 4+ 4V2, and minimisation with respect to f;

gives fi = gi F(wy), with

2V2 -
Flap) = [1 i nTR tanh(87,/2) coth(Bay /2)} . a3)
k

Thus, in general, the interaction Hamiltonian contains contri-
butions from both Hpngar and Hpispracep. As we shall see
below, in deriving a master equation utilising H; as a pertur-
bation, we therefore have terms arising from both HpNgar
and HpispLacED, as well as from their product.

Introducing the spectral density (assumed to be the same
at each site) as J(w) = ), |gk|28(w — wy) allows Eq. (10) to
be written in integral form as

B = exp [— / ” dw% F(w)? coth(ﬂw/2)1| . (14)
0

Since Vp = VB, and B is itself a function of Vg, the
renormalised coupling strength must be solved for self-
consistently.

For a sufficiently large bath of oscillators, the spectral
density is typically taken to be a smooth function of w, with
polynomial-like behaviour in the small @ limit; J(w) ~ »*
as w — 0. Those spectral densities with s < 1, s = 1, and
s > 1 are referred to as sub-Ohmic, Ohmic, and super-Ohmic,
respectively.®® Of particular significance is the value of the
renormalised interaction strength, Vz, found for an Ohmic en-
vironment. For the full polaron transformation, the integral in
Eq. (14) suffers from a well-known infra-red divergence,%®¢
which can be seen here by setting F(w) =1 and taking
J(w) ~ w. In this case, Vg — 0 in the polaron transformation
regardless of the temperature or the strength of the system-
bath coupling. For an Ohmic environment, we are therefore
forced to conclude that only incoherent dynamics can be cap-
tured by the full polaron transformation when it is used in
conjunction with a time-local master equation approach. Im-
portantly, this is not the case for the variational theory as the
function F(w) need not be equal to 1, and hence both coherent
and incoherent dynamics can be captured.

lll. MASTER EQUATION

Having performed the variational transformation on our
Hamiltonian to identify the perturbation term H;, we now em-
ploy the time-convolutionless projection operator method'® to
derive a master equation governing the donor-acceptor en-
ergy transfer dynamics under the influence of the surround-
ing environment. This technique utilises a projection op-
erator, P, defined to satisfy Py = Trp(x) ® pr = p ® pr,
where x is the density operator of the combined system-
plus-environment state, p is the reduced density operator of
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the system (the donor-acceptor pair in our case), and pgr is
a reference state of the environment, which can in principle
be chosen arbitrarily. Using the projection operator, an exact
time-local master equation for Px can be derived, which in-
volves Py itself and, in general, the complementary projec-
tion, Qx(0) = (I — P)x(0), of the initial state x(0). Impor-
tantly, in the present case, since our Hamiltonian has been
transformed into the variational frame, we obtain a master
equation involving the variationally transformed density op-
erator, x7 = e xye~C. Truncating the exact expression to sec-
ond order in H, our interaction picture master equation reads

do _ -
% = Teg[ROP77(0)] + Tes[ (1) Qxr (O)], (15)

where the homogeneous contribution is given by

Tea KPR ()] = — / dsTeg A1), L (5), pr(0)pell,
0

(16)
while the initial-state-dependent inhomogeneous term is

Trp[Z(1)Qxr(0)] = —iTrp[H(t), Qxr(0)]

_ / dsTrg [ A1), [ (s), Qxr (O],
0
(17)

with tildes indicating operators in the interaction picture,
Hj(t) = expli Hot]Hy exp[—i Hot], and pr(t) = Tra(xr(?))
being the reduced density operator in the variationally trans-
formed frame. Note that in deriving Eq. (15), we have utilised
the fact that Trg(H;(t)pr) = 0.

Derivation of the final form of the master equation now
proceeds in the usual way and is somewhat lengthy given
the various terms present in H;. We therefore leave the de-
tails for Appendix A and mention only the salient points
here. From Egs. (16)and(17) it is evident that the mas-
ter equation will contain two-time correlation functions aris-
ing from the product of 1:11 (t) = I:]LINEAR(t) + I:IDISPLACED(Z)-
We write H; = Z?zl A; ® B;, with system operators A
= |1X1], A2 = [2){2|, A3 = 0y, and A4 = oy, and bath op-
erators B; = 3", (g« — fi)(b} ; + by.;) for i = 1,2, while Bs
= VB, and B4 = V B,. The correlation functions appearing
in the master equation can then be written as

Aij(v) = Trg(Bi(t)B;(0)pr), (18)

where we choose a thermal equilibrium bath reference state,
pr = e P /(Tre=Fln),

For i =1, 2 these correlation functions have a similar
form to those found in Redfield theory,

A1) = An(r) = /0 doJ(@)(1 — F(w))*
X (cos(wt) coth(Bw/2) — i sin(wt)),
(19)

while A»(t) = As(r) = 0. Note that in the polaron limit
(F(w) — 1) these correlation functions vanish. For i = 3, 4,
we obtain correlation functions similar in form to those of a
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polaron master equation,*+*°
Ass(t) = (Vg/2)® + 790 —2), (20)
Au(®) = (Vi/2) e — e, 1)

with
J(w)

" F(w)2

¢(r) =2 /-00 dw
0
X (cos(wt) coth(Bw/2) — i sin(wt)), (22)

while Asz4(t) = Agz(r) =0. In the weak-coupling (Red-
field) limit F(w) — 0, and As3(7) and Aus(t) then disap-
pear. The last type of correlation function is unique to the
variational theory and arises from the product of HpiNgar
and HDISPLACED~ We have A14(T) = A42(‘L’) = iAc(T), and
Ar4(t) = Ag1(t) = —iAc(T), where
o0

Ac(t) = VR/ da)MF(a))(l — F(w))
0

w
X (sin(wt) coth(Bw/2) + i cos(wt)), (23)

and Aj3i(t) = A13(t) = As(t) = Ayxz(t) = 0. These corre-
lation functions are most important in the intermediate
regime, where neither the full polaron displacement (F(w)
= 1) nor zero displacement (F(w) = 0) are appropriate.

The inhomogeneous term in Eq. (15) depends on the
quantity Qx7(0). Assuming a separable initial state corre-
sponding to an excitation on the donor, p(0) = |[1)(1|, with
the environment in the state pg(0), we find

Qxr(0) = (1 = P)(e [1)(1] ® pp(0)e~)
= [1)(1] ® (orB(0) — pR). (24)

where p1(0) = By 105(0)B_; is the variationally trans-
formed bath initial state. Thus, we see that the inhomoge-
neous term vanishes, if we assume our initial environmen-
tal state to be displaced such that pg(0) = B_ ;pr B+ 1, since
then prg(0) = pr. We might, however, wish to consider a
case where the excitation enters the system on a short enough
timescale such that the bath does not have time to displace
in response to it. The correct initial state would then be
pp(0) = pr, such that prg(0) = B4 10rB_ 1. We then find
Qxr(0) # 0, and so the inhomogeneous term remains. De-
tails of the first- and second-order inhomogeneous contri-
butions to the master equation in this case are presented in
Appendix A.

IV. ENERGY TRANSFER DYNAMICS

Let us now use the variational master equation we
have derived to investigate the dynamics of an excitation
in the donor-acceptor system. To do so, we calculate the
population in state |1) (the donor) as a function of time,
p11(t) = (1/2)(1 4+ «,(t)), where o, = Tr(o, x(¢)). Generally,
care must be taken when calculating expectation values
from a master equation derived in a transformed frame.
However, since eCo,e™% = o,, we find a,(t) = Tr(o,x(t))
= Tr(o,e ¢ x7(¢)e®) = Tr(o, xr(t)). Thus, the population
dynamics in which we are interested is unaffected by
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transformation into the variational representation, and we may
use our master equation for pr(¢) directly to compute p;;(z).

In the following subsections we shall compare the
dynamics generated by the present variational theory to
that found using both the Redfield and polaron approaches.
Redfield theory corresponds to second-order perturbation
in the original system-bath interaction term, before any
transformation has been applied to the Hamiltonian. Within
the present formalism it can therefore be recovered by setting
F(w) = 0. Typically, it is further assumed in this limit that
the bath correlation functions decay on a timescale much
faster than that of the excitation dynamics, which allows the
integration limits in Eq. (16) (and also in Eq. (A3)) to be taken
to infinity. Dynamics referred to as Redfield in the subsequent
sections is calculated in this way. On the other hand, a po-
laron master equation is obtained through performing the full
transformation on the original Hamiltonian. In our formalism,
this corresponds to setting F(w) = 1. Making no further
assumptions, our theory then reduces to that presented in
Refs. 45 and 46. Dynamics referred to as polaron in the
following is calculated in this manner.

A. Super-Ohmic environments

To begin our analysis, we shall first consider a donor-
acceptor pair that is coupled to a super-Ohmic environment,
as has been studied previously using the polaron formalism in
Refs. 44-49. This immediately allows us to investigate how
the present variational master equation theory compares to
both the Redfield and polaron forms, without having to worry
about complications such as the polaron theory infra-red
divergence, which would be an issue in the Ohmic case (see
Sec. IV B). We take a spectral density of the form
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where o3 captures the strength of the system-bath coupling
and o, is a phenomenological cut-off frequency. A spectral
density of this form is typical in the solid-state, for exam-
ple when describing coupling to acoustic phonons, see, e.g.,
Refs. 80—82. We also introduce the reorganisation energy, de-
fined as

o0
p— f Jy(w)o 'dw, (26)
0
which constitutes a measure of the system-bath interaction
that also accounts for the range of frequencies over which the
bath can influence the system. For the super-Ohmic spectral
density given above we find A3 = 20302.

In Fig. 1, we plot the excitation population dynamics us-
ing the variational theory (solid black curves), Redfield the-
ory (red dashed curves), and the polaron theory (blue dot-
ted curves), for various values of the reorganisation energy,
A3, and cut-off frequency, w.. In the variational and polaron
cases, we have assumed that the environment is initially in a
displaced thermal equilibrium state, resulting in the absence
of inhomogeneous terms, as discussed in Sec. III. The effect
of assuming a non-displaced initial bath state is discussed in
Sec. IV C. In plot (a) the reorganisation energy has a rela-
tively small value of A3 = 20 cm™!, and the cut-off frequency
is such that V/w, < 1. For these parameters, we expect both
the Redfield and polaron theories to be valid,>?>* and hence
they yield almost identical results. We also see that the vari-
ational theory predicts essentially the same dynamics in this
relatively undemanding weak-coupling regime.

Plot (b) corresponds to the case where the reorganisation
energy has been increased by a factor of 10. We would not
expect Redfield theory to be justified in this regime, owing
to the large value of A3, and indeed we see that it predicts
a strong damping of the system dynamics, at odds with the
other approaches. In fact, in this regime the variational min-

Ji(w) = azw’e />, (25) imisation condition corresponds approximately to performing
1.0 \ 1.0 ‘
A3=20 cm™ A3=200 cm™’
0.8 =400 cm™ 081 we=400 cm™
06} A
)\ ,I
0.4t 04 \, ,,' [N MmN ==
0.2 0.2r
a (@ (b)
o) 00 1 1 1 OO 1 1 1 1
a 0.0 0.5 1.0 1.5 2 0.0 0.2 0.4 0.6 0.8 1.0
- 10 : 1. ‘ ‘
2 1 -1
& " A3=5cm A3=25cm
0.8y ¢ " we=53 cm™ 0.8¢ \‘ we=53 cm™’
) " [\%}
060t [ A oA o~ 10
e ) 1 . -~
0.47 . Y e RLT T VY S WY SN WY A W A 0_4, |‘ e N '/ "\ — - -
7 - kd \ T NS -
o2 ¥ W v Y 1 o2f W/ ]
(©) (d)
0.0 : : : : 0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
time (ps) time (ps)

FIG. 1. Excitation dynamics for various reorganisation energies and cut-off frequencies, and for coupling to a super-Ohmic environment. Calculations using
the variational master equation (black solid curves), Redfield theory (red dashed curves), and polaron theory (blue dotted curves) are shown. Parameters:

€=100cm™, V =100 cm™!, and T = 300 K.
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1.0 T T T
d — =1
0.8 1 — =10
s 24=100
[e]
2 o6t { — A4=500
(0]
= — ,=10°
0.4+ =
AR
02 1 L 1
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FIG. 2. Excitation dynamics calculated using the variational theory for cou-

pling to an Ohmic environment, with reorganisation energies as indicated (in

units of cm™1). Parameters: € = 100 cm™!, V = 100 cm™!, w, = 53 cm™!,

and T = 300 K.

the full polaron displacement, i.e., F(w;) =~ 1, and so the po-
laron and variational theories give very similar results. This
is to be expected (for a super-Ohmic bath), as for large A3
and small V/w, the full polaron transformation provides a
much smaller perturbative term than the original system-bath
coupling®* and is therefore a superior representation in which
to approximate the system dynamics.

For the parameters of plot (c), on the other hand, we
now have V/w, > 1, and the full polaron displacement is no
longer appropriate. We therefore see that the polaron theory
incorrectly predicts a strong damping of the system dynamics,
even though the reorganisation energy is small. In fact, the
variational minimisation condition corresponds here to per-
forming only a weak transformation on the Hamiltonian, i.e.,
F(wy) =~ 0, and the variational and Redfield theories thus pre-
dict similar results.

Plot (d) corresponds to none of the limiting cases dis-
cussed above, and consequently all three theories predict dif-
ferent dynamics. Here, we expect the variational approach to
most accurately describe the true dynamics, since the min-
imisation condition allows for a mode-specific optimisation
of the displacement of the bath, which the other theories do
not. We note also that a recent comparison of the three the-
ories considered here with a numerically exact path integral
approach confirmed the superiority of the variational method
over Redfield and polaron for super-Ohmic environments, al-
beit for a different model system.®’

J. Chem. Phys. 135, 114501 (2011)

B. Ohmic environments

We now consider the excitation dynamics when the
donor-acceptor pair are coupled to an Ohmic bath. Specifi-
cally, we take the overdamped Brownian oscillator form

J 2 o w. w 7

) = @7
which behaves linearly in the limit @ — 0. From Eq. (26) we
find A; = «y, which is equivalent to the reorganisation energy
used in Ref. 33.

In Fig. 2, we plot the excitation dynamics calculated from
the variational theory for several values of the coupling A;.
As in the super-Ohmic case, we assume a displaced initial
bath state resulting in the absence of inhomogeneous terms.
As we might expect, for small A, the dynamics shows pro-
nounced oscillations with a decaying envelope, and as A is in-
creased, the oscillations become more strongly damped. Once
A1 = 100 cm™!, however, the dynamics becomes entirely in-
coherent, and the steady state is reached on a timescale
~ 0.1 ps. Interestingly, as the coupling strength is increased
further, the excitation begins to take longer to relax towards
the steady state, resulting in a decrease in the rate of excitation
transfer between the two sites. This behaviour is consistent
with results obtained using the hierarchal equations of motion
technique.’*%

By way of comparison, in Fig. 3 we plot excitation dy-
namics for parameters identical to those in Fig. 2, though
now calculated using Redfield and polaron theories. As in the
super-Ohmic case, we see that for small reorganisation ener-
gies, the Redfield and variational theories predict very simi-
lar dynamics. However, as the system-bath coupling strength
becomes large, Redfield theory cannot capture the expected
reduction of the transfer rate,>3* and there appears to be a
particular coupling strength after which the steady state is al-
ways reached on a timescale ~ 0.1 ps.

For the Ohmic spectral density studied here, we see that
polaron theory behaves quite oddly. As previously mentioned,
a spectral density of this form presents a problem for a time-
local master equation obtained in the polaron frame, since a
complete renormalisation of the electronic transfer strength is
predicted, Vg — 0. In this situation, the polaron formalism
can capture only incoherent dynamics. In fact, when Vg =0
(in either the polaron or variational theory), from Eq. (A1) we
find a simple expression governing the time evolution of the

Redfield Polaron
1.0 : 1.0 .
(a) (b)
0.8 0.8
o
o
Q 0.6H 0.6
[0]
0 0.4} v 0.4+t \
U (v’ /\/
0.2 ; ; ; 0.2 A ; ;
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
time (ps) time (ps)

FIG. 3. Redfield and polaron dynamics for coupling to an Ohmic environment. Each curve corresponds to a different reorganisation energy, as indicated in
Fig. 2. Parameters: € = 100 em™, V=100 ecm™!, w. =53 cm™ !, and T = 300 K.
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FIG. 4. Dynamics of the populations of BChl 1 (black) and BChl 2 (orange) for parameters corresponding to the FMO complex, at T = 77 K (left) and
T = 300K (right). Parameters: A; = 35 em™, w, =106em™ !, e = —120cm™!, V = —87.7cm™ L.

population on site 1,

dou(t)

a (28)

—k (€, D)p11(t) + k(—€, 1)1 — p11(2)),

where the rates determining transfer between the sites are
given by’®

t
k(xe, t) = 2V’Re [ / dteiiG’(Bze¢(f)):| . (29)

0

Thus, in the limit Vx — 0 we see that the polaron theory re-
duces to Forster theory, though with time-dependent trans-
fer rates,”! which we expect to work well only in the strong
system-environment coupling limit.>3 This is confirmed by
the unphysical behaviour we see in the polaron plot for A,
= 1cm™!. At larger coupling strengths, however, polaron the-
ory does correctly predict a reduction of the transfer rate. On
comparison of Figs. 2 and 3, it can be seen that the minimi-
sation condition [Eq. (13)] present in the variational theory
picks out an optimised Hamiltonian transformation dependent
upon the system-bath parameters, resulting here in qualita-
tively correct dynamical behaviour across the full range of
coupling strengths.

To test the variational theory in a definite physical
context, in Fig. 4 we plot the energy transfer dynamics
in a very simple model that consists of two strongly cou-
pled bacteriochlorophyll sites (BChl 1 and BChl 2) of the
Fenna-Matthews-Olson (FMO) complex.n’73 We use our
two-site Hamiltonian, Eq. (1), with system parameters
taken from Ref. 73 (corresponding to € = —120cm™!
and V = —87.7cm™!, see also Ref. 74), and consider an
Ohmic spectral density [Eq. (27)] with reorganisation energy
A1 =35cm™! to match Ref. 40. By comparison of our
variational results at cryogenic temperature (7' = 77 K) and
physiological temperature (7 = 300 K) with Figs. 2 and 3, re-
spectively, in Ref. 40, it can be seen that the variational theory
is in excellent agreement with the numerically exact hierarchi-
cal approach on a timescale of the order ~100 fs, after which
time we would expect discrepancies as population begins to
leak into the other BChl sites not accounted for here.**:7476
Hence, while this may be a very simplified example, it serves
to highlight the versatility of the variational approach and
paves the way for a more detailed study of the FMO system.

C. Bath relaxation effects

In the previous sections, we assumed a displaced initial
bath state when calculating dynamics using the variational
and polaron theories. This simplified the relevant master equa-
tions, since it meant that they contained no inhomogeneous
terms. This simplification relies on a separation of timescales
in the combined system-environment dynamics, i.e., the bath
relaxation must be fast compared to the energy transfer dy-
namics between the two sites. Thus, though the cut-off fre-
quency dependence in the variational theory was seen to play
an important role in the reduced dressing of the energy trans-
fer interaction strength, the bath was still assumed to instan-
taneously adjust to its variationally displaced state. We now
relax this assumption by the introduction of the inhomoge-
neous terms, the presence of which results from a difference
between the initial bath state and that taken to be the refer-
ence state in the projection operator, and therefore (approxi-
mately) account for the influence of environmental relaxation
on the state of the system. Hence, we shall now consider a
non-displaced initial bath state, pp(0) = pg, and investigate
what difference the inhomogeneous terms in our variational
master equation may make, as has been studied previously in
the polaron case.*>46-4

In Fig. 5, we plot the excitation dynamics calculated
from the variational master equation for a super-Ohmic spec-
tral density [Eq. (25)] including (dashed curves) and exclud-
ing (solid curves) all first- and second-order inhomogeneous
terms. The main plot is for zero temperature, while the inset
corresponds to T = 300 K. Though we find here that the ef-
fect of the inhomogeneous terms for a localised initial state
is weak,*® interestingly, at zero temperature we see that the
relaxation of the bath actually causes oscillations in the popu-
lation dynamics to be suppressed. At T = 300 K, the situation
is somewhat different, and the dynamics is predominately in-
coherent without inhomogeneous terms, whereas their inclu-
sion seems to give rise to small amplitude oscillations.*

As a brief aside, at this point it is worth comparing the
steady state reached at zero temperature in the variational the-
ory to the incorrect value predicted by the non-interacting
blip approximation (NIBA) for a biased system:%%:67 pNIBA
= (1/2)(1 — tanh(Be/2)). At zero temperature, we find
pPA = 0, and so the NIBA predicts that all population is
transferred to site 2, regardless of the reorganisation energy, or
the relative values of V and €. From Fig. 5 we see that this is
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FIG. 5. Excitation dynamics with (dashed) and without (solid) bath relax-
ation terms, for a super-Ohmic spectral density. The main plot corresponds
to zero temperature, while the inset shows dynamics for 7 = 300 K. Param-
eters: A3 = 50cm™!, we = 53cm™!, e = 100cm™!, V = 100cm™!.

not the case in the variational theory, and we therefore expect
it to better capture the corresponding dynamics in this regime.

1. Energy transfer rate

The effect of the bath relaxation terms can also be seen
in the inter-site energy transfer rates, which we explore here
for an Ohmic bath [Eq. (27)]. To calculate these rates, we fit
the time domain dynamics to the solution of the simple clas-
sical rate equation p;; = —k1p011 + k—(1 — p11), and deter-
mine the quantity «,, which characterises the rate at which
excitation is passed from site 1 to site 2. Fitting quantum dy-
namics to such a rate equation is clearly dubious if there are
many coherent oscillations present in the system. We shall
therefore consider a small donor-acceptor interaction strength
of V. =20cm™!, for which we expect the dynamics to be
predominately incoherent over a large reorganisation energy
range.’3 4

In the main part of Fig. 6 we plot the transfer rate, «,
as a function of reorganisation energy, A, calculated using
Redfield theory (red dashed curve), polaron or Forster theory
(blue dotted curve),”” and the variational theory with (black
circles) and without (black crosses) inhomogeneous terms.
The inset shows the corresponding time domain dynamics for
A1 = 2cm™!, confirming that the transfer is predominately in-
coherent, even at this small reorganisation energy.

There are a number of interesting features to be seen in
the main plot. First, consistent with Fig. 3, the transfer rate
calculated using Redfield theory fails to decrease significantly
at large values of A;; as expected, Redfield theory is inade-
quate to describe the dynamics for large system-environment
coupling strengths.>!** Second, and in contrast, the varia-
tional theory (both with and without inhomogeneous terms)
is capable of interpolating between the small and large reor-
ganisation energy limits, again in accord with the dynamics
shown in Fig. 3. However, we note that around 1| = 4cm™!
the variational theory “jumps” towards the value predicted by
Forster (or polaron) theory. This behaviour can be attributed
to a discontinuous change from non-zero to zero renormalised
coupling Vg in the variational theory, as A; is increased.
For the parameters of Fig. 6, above A; & 4cm~! the varia-
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FIG. 6. Energy transfer rate x4 as a function of reorganisation energy, cal-
culated using Redfield theory (red dashed curve), Forster theory (blue dot-
ted curve), and the variational theory with (black circles) and without (black
crosses) bath relaxation terms. The inset shows the corresponding time do-
main dynamics for A; = 2cm™!, where the variational calculation (black
solid curve) is identical both with and without inhomogeneous terms. Pa-
rameters: V =20 cm™!, € = 100 cm™!, w. =53 cm~ ! and T = 300 K.

tional minimisation condition [Eq. (13)] suddenly reduces to
F(wy) = 1, and so the polaron and variational theories then
become equivalent. Finally, in the present context, perhaps
the most interesting feature of Fig. 6 is that the addition of
inhomogeneous terms to the variational theory serves to re-
duce the transfer rate for intermediate values of X, bringing
it closer to that predicted using the hierarchical equations of
motion or path integral techniques (see Refs. 33 and 43 for
similar plots using identical parameters).

To conclude this section, we note that for most parameter
regimes the inhomogeneous terms seem to be well behaved,
and indeed we have just seen how they can increase the accu-
racy of the variational method. However, we have found that
for certain parameters the inhomogeneous terms can be badly
behaved and can even cause the variational theory to predict
unphysical behaviour (e.g., for very large A; at T = 0), where
the behaviour is perfectly physical in their absence. We sus-
pect that in these regimes the initial bath displacement is too
great to be described accurately by only the first- and second-
order inhomogeneous contributions to the master equation,
but further work is required to fully assess this conjecture.

V. SUMMARY

In summary, we have presented a versatile time-local
variational master equation technique, which we have used to
investigate the energy transfer dynamics in a donor-acceptor
pair. The master equation is constructed from a variationally
optimised interaction Hamiltonian, obtained by applying a
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unitary transformation to the full Hamiltonian, which results
in a perturbative term that remains small over a wide range of
parameter regimes. The formalism also provides a mechanism
with which to (approximately) include the effects of the dy-
namic relaxation of the environment. One of the most impor-
tant aspects of the variational master equation is its flexibil-
ity. We have seen how it naturally reduces to the well-known
Redfield, polaron, and Forster forms in the appropriate limits,
and that it can also be used to explore energy transfer dy-
namics under conditions where those approaches are known
to fail. In particular, we can capture coherent dynamics for a
donor-acceptor system coupled to an Ohmic bath, something
not possible in the polaron limit.

The work presented here opens up many potential av-
enues for future research. For example, although we have
shown that the qualitative predictions of the variational mas-
ter equation are generally good, it would be interesting to
quantitatively assess its accuracy against known numerically
exact benchmarks.?>3%4370 Furthermore, it may well be the
case that refinements to the variational procedure, or even to
the form of the unitary transformation itself, could increase
the accuracy and range of validity of the method yet fur-
ther. An extension to multi-site systems would allow a mas-
ter equation exploration of the energy transfer dynamics valid
over a range of different parameters, for example, in the full
FMO complex.”>’* Lastly, a study utilising the formalism
presented in Appendix B, which extends the theory to include
spatially correlated environmental fluctuations, could help to
shed light on their influence in coherent energy transfer.
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APPENDIX A: MASTER EQUATION DERIVATION
1. Homogeneous terms

Here, we present further details of the derivation of the
variational master equation used in this work. Upon insert-
ing the interaction Hamiltonian into Egs. (16)and (17), and
returning to the Schrodinger picture, we find a master equa-
tion of similar form to Eq. (15), dpr/dt = Trg[IC(t)P xr(t)]
+ Trp[Z(t)Qxr(0)], where the homogenous contribution can
be written

Trs[K()P xr ()] = —ilHg, pr(t)]

1
=5 2 D Vi@, DIAL Ajupr(D) = prA] )]
ij o

—i Y Y Sij(@, DlAL Ajupr) + pr(OA] ],

ij o

(AD)
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with Hg = (1/2)eo, + Vgo, + R1. The indices i and j
(i,j=1,2,3,4) label system operators A; = |I)}1]|, A,
=[2)(2|, A3 =o0,, and A4 = o,. In deriving Eq. (Al) we
have utilised the following decomposition of the system
operators:
Aiw= Y |ENEIAIENE,

E'—-E=w

(A2)

where the summation runs over all pairs of eigenvalues
of Hy having a fixed energy difference w. Using Eq. (A2)
the transformation into the interaction picture is easily
achieved since we have Ai,w(t) = expli Hst]A; , exp[—i Hst]
= A;,exp[—iwt], while A; = Zw A, . Given our form for
Hg we find that the @ summation runs over the three values

w =0,%+n, wheren = /€2 + 4V1% as in the main text, and the
eigenoperators are given by A, = —cos0siné |—){+|, Ao
= sin% 0 | =) —]| + cos? @ |+)+], Ay, =cosfsing |—)(+],
Az = cos? 0 |=)—| +sin? 0 [+)+], Az, = cos20|—)+],
Az =sin20(|+)(+| — [=X=D, A4y =i[=)+|, and
Ay =0. In all cases A; _, = Ain, and eigenstates of Hy
are defined to satisfy Hg|x) = (1/2)(2R £ n)|£). The
angle 6 = (1/2)arctan(2Vg/€) characterises the relative
strength of the renormalised excitonic transfer inter-
action to the energy mismatch between the donor and
acceptor.

The time-dependent rates and energy shifts appearing
in Eq. (Al) are given by y;j(w,?) = 2Re[K;j(w, t)] and
Sij(w, t) = Im[K;j(w, t)], respectively, defined in terms of
the response functions

t
Kij(w, 1) = / Aij(r)e' dr, (A3)
0

which depend on the bath correlation functions A;;(t)
= Tr(Bi(t)B;(0)pRr). Here, we label B; = 3, (g — fk)(b,t’i
+ by;) fori =1, 2, while B; = VB, and B4 = V By. These
correlation functions are given by Egs. (19)—(23) of the main
text.

2. Inhomogeneous terms

The inhomogeneous terms in the master equation depend
on the quantity Q x7(0). If we wish to consider the initial state
x(0) = [1X1] ® pr, we find

Qxr(0) = (1 = P)e” [1)(1] ® pre™ )
= [1X1] ® (PR — PR): (Ad)

where prr = By 1porB_,1 is a transformed bath reference
state. Using Eq. (17) we find that the inhomogeneous terms
take the form

TralZ()Qxr(O)] = —i Y Y " Ti(1)e [Ar, Ay,

1
— Z Z <§yl.(j‘1)(a)’, t)cos wt — Si(;l)(a)’, t)sin a)t)

ij wo'

x [A;, Aj,ao’Alcu - AJ{,wAJJr‘,w’]
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—i Z Z (5 yi(jd)(w/, t)sinwt + Si(f)(w/, t) cos a)t)

ij wo
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X [Aj, AjwrAro + AT AT L, (A5)

in the Schrodinger picture, where I';(¢) =TrB(1§,-(t),0TR).
In a similar way to those appearing in the homogeneous
terms, the rates and energy shifts are defined as yi(jd)(w, 1)
= 2Re[K (. 1)] and S{(w, 1) = Im[K (. 1)], this time
in terms of the response functions '

t
K. 1= fo A(x, 1) dr, (A6)
with A{(z, 1) = Trp(Bi(1)Bj(t — T)pr) — Aij(7).
In order to evaluate the quantities I';(¢) and Al(;l)(r, t) we

utilise the cyclic invariance of the trace and insertions of the
identity operator, I = By ;B_ , to write

(1) = Trp(B;(t)p1r) = Tra(B;(t)pr) (AT)

and

AP 1) = Teg(Bi(0)B;(t — T)pr) — Aij(1), (A8)
where Bi(t) = B_,11~§,- (®)B4+1. With reference to
Eq. (7), we find Bi(t) = Bi(t) + C(t), Bat) = By(1),
Bs(t) = (V/2)(BL(1)C(t) + B_(1)C_(t) — 2B), and By(1)
= (iV/2)(B4(1)C4(t) — B_(1)C_(1)), where

Ci(1) =2 fo h dw% F()(1 — F(w)coswr  (A9)
and Cy(t) = exp[xiy(¢)], with

V() =2 /0 " do J;‘;) F(w)? sinot. (A10)

We therefore find T'y(r) = C1(r), Ta(r) =0, while

['3(t) = Vr(cos¥(t) — 1) and T'y(¢) = —Vgsiny (). In a
similar way, we find A%(z,1)= C,(1)C\(t — r) while
A, =AY, 1) = A% (x,1)=0. Those quantities
arising from HpispLacep are given by

2
A, 1) = %(e‘l’(”(cosw(r) — Yt =)= 1)

+e D (cos[y (1) + Yt — )] — 1)
—2(cos Y (t) + cosyr(t — t) — 2)),

(A11)
2
AL, 1) = %(e“”(cosw(r) -y —1)]-1)

—e ?D(cos[y(t) + ¥t — )] — 1), (Al2)

2
AD 1) = %(ew [y (1) — Yt — )]

—e?Dsin[y () + Yt — 1)]

+2siny(t — 1)), (A13)
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and
V2
A1) = FH= D sinly () — ¥ — 7))
—e?Osin[y () + ¥t — 7)]

+ 2 sin (1)),

where ¢(?) is defined in Eq. (22). Correlation functions of this
type coming from the product of HpspLacep and Hp Ngar are
given by

(Al4)

A%, ) =iAc(@)siny(t — 1)+ T3 — 1), (Al5)

AD (. 1) = —iAc(r)siny(t — 1), (A16)
AD (1) = —iAc(@)siny(t) + Tyt — DT3(1),  (A17)
AQ (@, 1) = iAc(@)siny @), (A18)

and
AD @, 1) = iAe(D)cos Y(t — 1) — 1]+ T1(OT4(t — 1),
(A19)

AD(, 1) = —iAc(D[cosy(t — 1) — 1], (A20)

ALz, 1) = —i Ac(D)lcos Y(1) — 1]+ T1(t — )Ty(1),
(A21)

AQ (@, 1) = iAc(D)cos (1) — 1]. (A22)

APPENDIX B: CORRELATED ENVIRONMENTS

Here, we extend the variational formalism presented in
Sec. II to include the effects of spatial correlations in the en-
vironmental fluctuations. To do so, rather than assuming that
each site is coupled to a separate bath of oscillators, we in-
stead couple each site to a common environment. The total
Hamiltonian now reads

H= "¢ |X){X|+ V(IXG)GX|+|GX)}XG])
j=12

+ Y IX) XY (8 ibl + g5 b + He.  (BD)
j=1.2 k

with Hg =), a)kb,ibk, and we note that we now have just
one creation operator for each mode, b,t. We make the
spatial separation between the sites explicit with position-
dependent phase factors in the coupling constants. We write
8kj = gre’® T with r j the position of site j (this further as-
sumes each site is coupled to the environment with the same
strength). The Hamiltonian describing dynamics within the
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single excitation subspace has a similar form as before,

€
Hsyp = 50z + Vo, + Hp

+ > 1) J|Z<gkjb +gr b, (B2)

j=12

with the Pauli operators defined in the same way as in the
uncorrelated case.

The variationally transformed Hamiltonian is once again
defined as Hr = e% Hyyge %, but now we have®

. frj v Je >
G = —ph, — —=b |, B3
Ej 1)l Ek ( o, T o (B3)

with the variational parameters also containing phase fac-
tors, fx;j = fke”‘"f. The transformed Hamiltonian reads Hr
= Hy + H;, where

H() 60’z + VRO'X + HB + 5 R]l (B4)

and H; = Hyinear + Hpispacep- Here,

Hinear = Y 11D (8 — fE* 7] +e7* by,
j k

(BS)
and HpispLacep = V(o By + 0y By), with B, = (1/2)(By
+ B_ —2B) and B, = (i /2)(B4 — B_) as before, but now

Bi — 1_[ D <j:£_f€(eik-rl _ eik-r2)> , (B6)
k

where D(x;) = exp[xkbk — x;'bi] is a displacement operator.
Importantly, the renormalisation factor, B = Tr(B1pp) now
depends on the distance between the two sites,

= exp Z f (1 — cos(k - d)) coth (ﬁ ) ,

(B7)
where d = r| —r,. The free energy minimisation is per-
formed in the same way as in Sec. II and again gives fi
= g F(wy), but now we find

2 -1
Flwy) —(1 AT (1 — cos(k - d)) tanh (’3"> oh(%))

(B8)

The derivation of the variational master equation then pro-
ceeds in the same way as in the uncorrelated case and re-
sults in a form identical to Eqs. (Al)and (AS). The differ-
ence, however, is that the functions A;;(7), Al(.;.])(r, t), and
[';(t), now also have the potential to depend on d. We
find

Ap(®) = An(2) = ) gi(1 — F(w)(cos(axt —k - d)
k

x coth(Bwy/2) — i sin(wyt — k - d)), (B9)

while Aj1(t) = Axp(t) and are found by setting d = 0 in
Eq. (B9). Once again Az3(t) = (V3/2)(e?® +e % —2),
Au(t) = (Vi/2)(e?™ — ™M), and Azy(r) = Ags(r) =0,
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but now we have
2
#(1) =23 2L P, (1 - costk - d))
k k

X (cos(wyt) coth(Bwy/2) — i sin(wT)). (B10)

The final correlation functions appearing in the homogeneous
terms are given by Aj4(7) = Agp(t) = iAc(r) and Apy(T)
= A41(t) = —iAc(7), where

2
Acm)=Vr Y. f}—j{F(ww(l — Fo)(1 = cos(k - d))
k

X (sin(wy 7) coth(Bwy /2) + i cos(wyT)),

and A31(7) = A13(7) = Azn(t) = Axn(t) =0.

To find the quantities appearing in the inhomogeneous
terms, we must first find the transformed bath operators,
Bi(t) = B_1Bi(t)By 1, where By =[], D(fi.1). We now
have B;(t) = B;(t) + Ci(t), fori = 1,2, where

(B11)

2
Co(t)y =2 Z %F(wk)(l — F(wy))cos(axt — k - d), (B12)
k

apd Ci(¢) is fognd by setting~d =0 in Eq. (B12). Laﬂstly,
B3(1) = (V/2)(BL(1)Ci(1) + B_(1)C_(1) —2B) and By(t)
= (iV/2)(BL(t)C4(t) — B_(t)C_(t)), where

2
w0y =23 5 Pl X(sin(wrt) + sin(egt — k - d). (B13)
. “k

With these transformed operators the functions I';(¢) and
Al(.;i)(r, t) can be found in a similar manner to Appendix A.
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