118 research outputs found

    Long-term potentiation in neurogliaform interneurons modulates excitation-inhibition balance in the temporoammonic pathway

    Get PDF
    Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse stratum lacunosum-moleculare exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex, but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of entorhinal cortex afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in stratum lacunosum-moleculare interneurons thus alters the excitation-inhibition balance at entorhinal cortex inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. Abstract figure legend Hebbian LTP of excitatory transmission onto interneurons located within hippocampal stratum lacunosum moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre-and post-synaptic activity. Using Ndnf-Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibers reveals LTP at EC inputs only. Using an optogenetic theta-burst stimulation (OptoTBS) protocol to stimulate EC fibers in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC-CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway

    Trematodes of the Genus Mesocoelium, Parasites of Anurans in the Ganzourgou Province, Burkina Faso

    Get PDF
    The Trematodes of the genus Mesocoelium parasites of Anurans from Mogtedo, Zam, and Zorgho, in the area of Ganzourgou in Burkina Faso have been investigated between August, 2018 and January 2019. A total of 233 Anurans belonging to 5 families, 5 genera, and 9 species were examined. The species of Anurans examined were: Hoplobatrachus occipitalis, Amnirana galamensis, Ptychadena bibroni, Ptychadena pumilio, Sclerophrys pentoni, Sclerophrys maculata, Sclerophrys regularis, Sclerophrys xeros, and Xenopus fischbergi. The Anurans were collected by hand using the Visual Acoustic Encounter Survey (VAES) method. Amphibians were euthanized and dissected to examine the digestive tract and their appendices for Trematodes of the genus Mesocoelium. Atotal of9 species of the genus Mesocoelium were recovered, with an overall prevalence of 11.16%. The Trematodes that have been recovered were: Mesocoelium monas, Mesocoelium brieni, Mesocoelium sociale, Mesocoelium microon, Mesocoelium incognitum, Mesocoelium danforthi, Mesocoelium americanum, Mesocoelium monody, and Mesocoelium megaloon. The means intensity of infestation was generally low except for Mesocoelium incognitum (100.5 parasites / infested host). That infestation was influenced by the selectivity of the host by the Trematodes. It appears that in the 9 species of Anurans examined, only 3 species were infested by parasitic Trematodes (Hoplobatrachus occipitalis, Sclerophrys maculata and Sclerophrys regularis). The preferred organ of the genus Mesocoelium infestations in the host was the small intestine. Histopathologic studies in infested organs will be carried out to show the impacts of the Trematodes of the genus Mesocoelium in their hosts

    Treatment technology for leachate from faecal sludge drying beds

    Get PDF
    The use of planted drying beds for faecal sludge treatment is effective for solid-liquid separation, but the leachate produced requires further treatment prior to discharge or reuse. This study investigates the potential of a new and low-cost solution for leachate treatment

    Characterization of Cellular Responses Involved in Reparative Dentinogenesis in Rat Molars

    Full text link
    During primary dentin formation, differentiating primary odontoblasts secrete an organic matrix, consisting principally of type I collagen and non-collagenous proteins, that is capable of mineralizing at its distal front. In contrast to ameloblasts that form enamel and undergo programed cell death, primary odontoblasts remain metabolically active in a functional tooth. When dentin is exposed to caries or by operative procedures, and when exposed dentinal tubules are treated with therapeutic dental materials, the original population of odontoblasts is often injured and destroyed. The characteristics of the replacement pool of cells that form reparative dentin and the biologic mechanisms that modulate the formation of this matrix are poorly understood. Based on the hypothesis that events governing primary dentinogenesis are reiterated during dentin repair, the present study was designed to test whether cells that form reparative dentin are odontoblast-like. Cervical cavities were prepared in rat first molars to generate reparative dentin, and animals were killed at various time intervals. In situ hybridization with gene-specific riboprobes for collagen types I and III was used to study de novo synthesis by cells at the injured dentin-pulp interface. Polyclonal antibodies raised against dentin sialoprotein (DSP), a dentin-specific protein that marks the odontoblast phenotype, were used in immunohistochemical experiments. Data from our temporal and spatial analyses indicated that cells forming reparative dentin synthesize type I but not type III collagen and are immunopositive for DSP. Our results suggest that cells that form reparative dentin are odontoblast-like.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67273/2/10.1177_00220345950740021301.pd

    Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life

    Get PDF
    Background: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. Methods: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants’ clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. Results: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/ 8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. Conclusions: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of lif

    The public health impact and cost-effectiveness of the R21/Matrix-M malaria vaccine: a mathematical modelling study

    Get PDF
    Background The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. Methods We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12–18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2–10 years (PfPR2–10) and ranges from 3% to 65% PfPR2–10. Findings Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181 825 (range 38 815–333 491) clinical cases per 100 000 fully vaccinated children in perennial settings and 202 017 (29 868–405 702) clinical cases per 100 000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of USD 3, the incremental cost per clinical case averted was USD 7 (range 4–48) in perennial settings and USD 6 (3–63) in seasonal settings and the incremental cost per DALY averted was USD 34 (29–139) in perennial settings and USD 30 (22–172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2–10. Interpretation Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. Funding The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy

    Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life.

    Get PDF
    BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life

    Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial.

    Get PDF
    BACKGROUND: Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy. METHODS: In this double-blind, randomised, controlled, phase 2b trial, the low-dose circumsporozoite protein-based vaccine R21, with two different doses of adjuvant Matrix-M (MM), was given to children aged 5-17 months in Nanoro, Burkina Faso-a highly seasonal malaria transmission setting. Three vaccinations were administered at 4-week intervals before the malaria season, with a fourth dose 1 year later. All vaccines were administered intramuscularly into the thigh. Group 1 received 5 μg R21 plus 25 μg MM, group 2 received 5 μg R21 plus 50 μg MM, and group 3, the control group, received rabies vaccinations. Children were randomly assigned (1:1:1) to groups 1-3. An independent statistician generated a random allocation list, using block randomisation with variable block sizes, which was used to assign participants. Participants, their families, and the local study team were all masked to group allocation. Only the pharmacists preparing the vaccine were unmasked to group allocation. Vaccine safety, immunogenicity, and efficacy were evaluated over 1 year. The primary objective assessed protective efficacy of R21 plus MM (R21/MM) from 14 days after the third vaccination to 6 months. Primary analyses of vaccine efficacy were based on a modified intention-to-treat population, which included all participants who received three vaccinations, allowing for inclusion of participants who received the wrong vaccine at any timepoint. This trial is registered with ClinicalTrials.gov, NCT03896724. FINDINGS: From May 7 to June 13, 2019, 498 children aged 5-17 months were screened, and 48 were excluded. 450 children were enrolled and received at least one vaccination. 150 children were allocated to group 1, 150 children were allocated to group 2, and 150 children were allocated to group 3. The final vaccination of the primary series was administered on Aug 7, 2019. R21/MM had a favourable safety profile and was well tolerated. The majority of adverse events were mild, with the most common event being fever. None of the seven serious adverse events were attributed to the vaccine. At the 6-month primary efficacy analysis, 43 (29%) of 146 participants in group 1, 38 (26%) of 146 participants in group 2, and 105 (71%) of 147 participants in group 3 developed clinical malaria. Vaccine efficacy was 74% (95% CI 63-82) in group 1 and 77% (67-84) in group 2 at 6 months. At 1 year, vaccine efficacy remained high, at 77% (67-84) in group 1. Participants vaccinated with R21/MM showed high titres of malaria-specific anti-Asn-Ala-Asn-Pro (NANP) antibodies 28 days after the third vaccination, which were almost doubled with the higher adjuvant dose. Titres waned but were boosted to levels similar to peak titres after the primary series of vaccinations after a fourth dose administered 1 year later. INTERPRETATION: R21/MM appears safe and very immunogenic in African children, and shows promising high-level efficacy. FUNDING: The European & Developing Countries Clinical Trials Partnership, Wellcome Trust, and National Institute for Health Research Oxford Biomedical Research Centre

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF
    • …
    corecore