31 research outputs found

    Comprehending Isabelle/HOL's consistency

    Get PDF
    The proof assistant Isabelle/HOL is based on an extension of Higher-Order Logic (HOL) with ad hoc overloading of constants. It turns out that the interaction between the standard HOL type definitions and the Isabelle-specific ad hoc overloading is problematic for the logical consistency. In previous work, we have argued that standard HOL semantics is no longer appropriate for capturing this interaction, and have proved consistency using a nonstandard semantics. The use of an exotic semantics makes that proof hard to digest by the community. In this paper, we prove consistency by proof-theoretic means—following the healthy intuition of definitions as abbreviations, realized in HOLC, a logic that augments HOL with comprehension types. We hope that our new proof settles the Isabelle/HOL consistency problem once and for all. In addition, HOLC offers a framework for justifying the consistency of new deduction schemas that address practical user needs

    CoSMed: a confidentiality-verified social media platform

    Get PDF
    This paper describes progress with our agenda of formal verification of information-flow security for realistic systems. We present CoSMed, a social media platform with verified document confidentiality. The system’s kernel is implemented and verified in the proof assistant Isabelle/HOL. For verification, we employ the framework of Bounded-Deducibility (BD) Security, previously introduced for the conference system CoCon. CoSMed is a second major case study in this framework. For CoSMed, the static topology of declassification bounds and triggers that characterized previous instances of BD security has to give way to a dynamic integration of the triggers as part of the bound

    A Decision Procedure for (Co)datatypes in SMT Solvers

    Get PDF
    International audienceWe present a decision procedure that combines reasoning about datatypes and codatatypes. The dual of the acyclicity rule for datatypes is a uniqueness rule that identifies observationally equal codatatype values, including cyclic values. The procedure decides universal problems and is composable via the Nelson–Oppen method. It has been implemented in CVC4, a state-of-the-art SMT solver. An evaluation based on problems generated from theories developed with Isabelle demonstrates the potential of the procedure

    Compositional reasoning for shared-variable concurrent programs

    Get PDF
    Scalable and automatic formal verification for concurrent systems is always demanding. In this paper, we propose a verification framework to support automated compositional reasoning for concurrent programs with shared variables. Our framework models concurrent programs as succinct automata and supports the verification of multiple important properties. Safety verification and simulations of succinct automata are parallel compositional, and safety properties of succinct automata are preserved under refinements. We generate succinct automata from infinite state concurrent programs in an automated manner. Furthermore, we propose the first automated approach to checking rely-guarantee based simulations between infinite state concurrent programs. We have prototyped our algorithms and applied our tool to the verification of multiple refinements

    Die Behandlung von SchĂ€delverformungen nach Etablierung einer Sprechstunde fĂŒr Kraniospinale Kinderchirurgie

    No full text

    Die Eigenschaften von Transmissionsgittern fuer den weichen Roentgenbereich

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore