31 research outputs found
Comprehending Isabelle/HOL's consistency
The proof assistant Isabelle/HOL is based on an extension of Higher-Order Logic (HOL) with ad hoc overloading of constants. It turns out that the interaction between the standard HOL type definitions and the Isabelle-specific ad hoc overloading is problematic for the logical consistency. In previous work, we have argued that standard HOL semantics is no longer appropriate for capturing this interaction, and have proved consistency using a nonstandard semantics. The use of an exotic semantics makes that proof hard to digest by the community. In this paper, we prove consistency by proof-theoretic meansâfollowing the healthy intuition of definitions as abbreviations, realized in HOLC, a logic that augments HOL with comprehension types. We hope that our new proof settles the Isabelle/HOL consistency problem once and for all. In addition, HOLC offers a framework for justifying the consistency of new deduction schemas that address practical user needs
CoSMed: a confidentiality-verified social media platform
This paper describes progress with our agenda of formal verification of information-flow security for realistic systems. We present CoSMed, a social media platform with verified document confidentiality. The systemâs kernel is implemented and verified in the proof assistant Isabelle/HOL. For verification, we employ the framework of Bounded-Deducibility (BD) Security, previously introduced for the conference system CoCon. CoSMed is a second major case study in this framework. For CoSMed, the static topology of declassification bounds and triggers that characterized previous instances of BD security has to give way to a dynamic integration of the triggers as part of the bound
A Decision Procedure for (Co)datatypes in SMT Solvers
International audienceWe present a decision procedure that combines reasoning about datatypes and codatatypes. The dual of the acyclicity rule for datatypes is a uniqueness rule that identifies observationally equal codatatype values, including cyclic values. The procedure decides universal problems and is composable via the NelsonâOppen method. It has been implemented in CVC4, a state-of-the-art SMT solver. An evaluation based on problems generated from theories developed with Isabelle demonstrates the potential of the procedure
Compositional reasoning for shared-variable concurrent programs
Scalable and automatic formal verification for concurrent systems is always
demanding. In this paper, we propose a verification framework to support
automated compositional reasoning for concurrent programs with shared
variables. Our framework models concurrent programs as succinct automata and
supports the verification of multiple important properties. Safety verification
and simulations of succinct automata are parallel compositional, and safety
properties of succinct automata are preserved under refinements. We generate
succinct automata from infinite state concurrent programs in an automated
manner. Furthermore, we propose the first automated approach to checking
rely-guarantee based simulations between infinite state concurrent programs. We
have prototyped our algorithms and applied our tool to the verification of
multiple refinements
Recommended from our members
Anthropogenic intensification of short-duration rainfall extremes
Short- duration (1-3 h) rainfall extremes can cause serious damage to societies through rapidly developing (flash) flooding and are determined by complex, multifaceted processes that are altering as Earth's climate warms. In this Review, we examine evidence from observational, theoretical and modelling studies for the intensification of these rainfall extremes, the drivers and the impact on flash flooding. Both short- duration and long- duration (\textgreater1 day) rainfall extremes are intensifying with warming at a rate consistent with the increase in atmospheric moisture (~7% K-1), while in some regions, increases in short- duration extreme rainfall intensities are stronger than expected from moisture increases alone. These stronger local increases are related to feedbacks in convective clouds, but their exact role is uncertain because of the very small scales involved. Future extreme rainfall intensification is also modulated by changes to temperature stratification and large- scale atmospheric circulation. The latter remains a major source of uncertainty. Intensification of short- duration extremes has likely increased the incidence of flash flooding at local scales and this can further compound with an increase in storm spatial footprint to considerably increase total event rainfall. These findings call for urgent climate change adaptation measures to manage increasing flood risks
Die Eigenschaften von Transmissionsgittern fuer den weichen Roentgenbereich
SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman