815 research outputs found

    The variable power coupler for the LHC superconducting cavity

    Get PDF
    Variable input couplers, providing a remotely controlled change of external Q by an order of magnitude under power, are required for the 400 MHz LHC superconducting cavities. These couplers must handle a forward power of 120 kW average and 180 kW pulsed with a large variety of load conditions up to full reflection. A summary of the LHC prototype coupler design (using d.c. bias on the main coupler transmission line to suppress multipactor) and of the RF power tests on a normal conducting test cavity will be given. The same couplers now have been RF power tested on a prototype superconducting LHC bi-module. During both of these RF tests, multipactor events have also been observed in the variable coupler part - outside the main coupler line - which cannot be suppressed by the actual d.c. bias. An improved design with a second d.c. bias will therefore be implemented. Nevertheless, after the usual RF conditioning, these prototype couplers have successfully passed all RF tests at power levels well above the LHC requirements

    RF Power Tests of LEP2 Main couplers on a Single Cell Superconducting Cavity

    Get PDF
    To determine the power capability of the input couplers for the LEP2 superconducting (SC) cavities a new test set-up has been built. The new set-up permits tests at high RF power levels under realistic conditions (cooled-down SC cavity). The couplers have been exposed to high RF power in matched and unmatched CW conditions as well as in pulsed operation. Power levels of more than 500 kW CW have been reached

    Status of RF power couplers for superconducting cavities at CERN

    Get PDF
    For LEP2 fixed RF power couplers of the open-ended coaxial line type with d.c. bias are used. The nominal power under matched conditions is about 120 kW at 352 MHz. However, to avoid ponderomotive instabilities, the cavities may not be detuned, i.e. the reactive beam loading cannot be compensated. The coupler is therefore exposed to standing waves with an equivalent power (travelling-wave (TW) producing the same field as the peak fields on the coupler line) of more than 200 kW. The final design of these couplers, their conditioning sequence and their actual performance are presented. For LHC a motor-driven mobile coupler is required to change the external cavity Q by a factor of four between beam injection and storage. During injection the forward power levels at 400 MHz are about 120 kW CW (for approximately 20 minutes) and 180 kW peak (for several milliseconds). Since practically all this RF power is reflected the equivalent travelling power is 480 kW and 720 kW, respectively. These couplers will be also provided with d.c. bias to suppress multipacting and ³deconditioning²

    DC-transport in superconducting point contacts: a full counting statistics view

    Get PDF
    We present a comprehensive theoretical analysis of the dc transport properties of superconducting point contacts. We determine the full counting statistics for these junctions, which allows us to calculate not only the current or the noise, but all the cumulants of the current distribution. We show how the knowledge of the statistics of charge transfer provides an unprecedented level of understanding of the different transport properties for a great variety of situations. We illustrate our results with the analysis of junctions between BCS superconductors, contacts between superconductors with pair-breaking mechanisms and short diffusive bridges. We also discuss the temperature dependence of the different cumulants and show the differences with normal contacts.Comment: revtex4, 20 pages, 15 figure

    Design Considerations for the LHC 200 MHz RF System

    Get PDF
    The longitudinal beam transfer from the SPS into the LHC 400 MHz buckets will not be free of losses without a lower frequency capture system and a fast longitudinal damping system in LHC. We present a complete study of a combined system using four identical copper cavities at 200 MHz delivering 3 MV total CW voltage and having still enough bandwidth to achieve fast longitudinal damping. The shape of a cavity was designed according to the accelerating mode performance, its tuning and the higher order mode spectrum with respect to the LHC beam lines and their possible attenuation. The possibility to park the cavities during coast was included. The local heat load and the corresponding cooling water distribution as well as deformations were studied and techniques to build the cavity with all ports at low cost are proposed. The parameters of the RF generators, couplers and detuning are determined. Simulations of the total LHC RF system incorporating real delays, generator bandwidth and the control loops confirm that this system is capable of capturing and damping the beam longitudinally without losses

    The LHC superconducting cavities

    Get PDF
    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported

    Inelastic Interaction Corrections and Universal Relations for Full Counting Statistics

    Full text link
    We analyze in detail the interaction correction to Full Counting Statistics (FCS) of electron transfer in a quantum contact originating from the electromagnetic environment surrounding the contact. The correction can be presented as a sum of two terms, corresponding to elastic/inelastic electron transfer. Here we primarily focus on the inelastic correction. For our analysis, it is important to understand more general -- universal -- relations imposed on FCS only by quantum mechanics and statistics with no regard for a concrete realization of a contact. So we derive and analyze these relations. We reveal that for FCS the universal relations can be presented in a form of detailed balance. We also present several useful formulas for the cumulants. To facilitate the experimental observation of the effect, we evaluate cumulants of FCS at finite voltage and temperature. Several analytical results obtained are supplemented by numerical calculations for the first three cumulants at various transmission eigenvalues.Comment: 10 pages, 3 figure
    • …
    corecore