776 research outputs found

    Bcl-2 prevents CD95 (Fas/APO-1)-induced degradation of lamin B and poly (ADP-ribose) polymerase and restores the NF-κB signaling pathway

    Get PDF
    In the study presented here, we investigated the possible interactions between CD95 (Fas/APO-1) and Bcl-2 by studying the effects of Bcl-2 on the modulation of cellular pathways activated by CD95 using HeLa cells as a model system. We report that stable expression of Bcl-2 in HeLa cells is associated with multiple phenotypic changes. Treatment of HeLa cells with anti-CD95 monoclonal antibody (mAb) resulted in preferential degradation of lamin B compared with lamins A and C. Significant lamin B degradation was detected as early as 1 h after anti-CD95 mAb treatment. In contrast, lamins A and C as well as actin remained unchanged until 4 h after treatment with anti-CD95 mAb, a time point that correlated with the period of DNA fragmentation. These results indicate that selective degradation of lamin B is an early cellular event in response to activation of the CD95 pathway and that it precedes DNA fragmentation. Overexpression of Bcl-2 resulted in prevention of lamin B degradation and DNA fragmentation into oligonucleosome fragments in response to the apoptotic signal by anti-CD95 mAb. In addition, in Bcl-2-overexpressing cells that were protected against apoptosis, anti-CD95 mAb-induced cleavage of poly(ADP-ribose) polymerase was completely blocked. Overexpression of Bcl-2 also resulted in restoration of the CD95-mediated signaling pathway involving activation of the transcription factor NF-κB (p50/RelA). These findings suggest that Bcl-2 prevents apoptosis in part by preventing the degradation of major nuclear polypeptides such as lamin B and poly(ADP-ribose) polymerase. In addition, our results demonstrate that CD95-mediated signaling involves activation of NF-κB (p50/RelA)

    BH3-only protein mimetic obatoclax sensitizes cholangiocarcinoma cells to Apo2L/TRAIL-induced apoptosis.

    Get PDF
    Human cholangiocarcinomas evade apoptosis by overexpression of Mcl-1. The drug obatoclax (GX15-070) inhibits antiapoptotic members of the Bcl-2 family including Mcl-1. The purpose of this study is to determine if obatoclax sensitizes human cholangiocarcinoma cells to apoptosis. The human cholangiocarcinoma cell lines, KMCH, KMBC, and TFK, were employed for these studies. Protein expression was assessed by immunoblot and protein-protein interactions detected by coprecipitation of the polypeptide of interest with S-tagged Mcl-1. Activation of Bak and Bax was observed by immunocytochemistry with conformation-specific antisera. Obatoclax induced minimal apoptosis alone; however, it increased apoptosis 3- to 13-fold in all three cancer cell lines when combined with Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Obatoclax did not alter cellular expression of Bid, Bim, Puma, Noxa, Bak, Bax, Mcl-1, or cFLIP. Mcl-1 binding to Bak was readily identified in untreated cells, and this association was disrupted by treating the cells with obatoclax. Additionally, Bim binding to Mcl-1 was markedly decreased by obatoclax treatment. We also identified alterations in Bak and Bax conformation following treatment with obatoclax plus Apo2L/TRAIL but not with either Apo2L/TRAIL or obatoclax alone. In conclusion, obatoclax releases Bak and Bim from Mcl-1 and sensitizes human cholangiocarcinoma cells to Apo2L/TRAIL-induced apoptosis. Obatoclax is a potentially promising adjunctive agent for the treatment of this cancer

    The Role of Checkpoint Kinase 1 in Sensitivity to Topoisomerase I Poisons

    Get PDF
    Agents that target topoisomerase I are widely utilized to treat human cancer. Previous studies have indicated that both the ataxia telangiectasia mutated (ATM)/ checkpoint kinase (Chk) 2 and ATM- and Rad 3-related (ATR)/Chk1 checkpoint pathways are activated after treatment with these agents. The relative contributions of these two pathways to survival of cells after treatment with topoisomerase I poisons are currently unknown. To address this issue, we assessed the roles of ATR, Chk1, ATM, and Chk2 in cells treated with the topoisomerase I poisons camptothecin and 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan. Colony forming assays demonstrated that down-regulation of ATR or Chk1 sensitized cells to SN-38 and camptothecin. In contrast, ATM and Chk2 had minimal effect of sensitivity to SN-38 or camptothecin. Additional experiments demonstrated that the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin, which down-regulates Chk1, also sensitized a variety of human carcinoma cell lines to SN-38. Collectively, these results show that the ATR/Chk1 pathway plays a predominant role in the response to topoisomerase I inhibitors in carcinoma cells and identify a potential approach for enhancing the efficacy of these drugs

    Noxa mediates hepatic stellate cell apoptosis by proteasome inhibition.

    Get PDF
    Aim: Induction of hepatic stellate cell (HSC) apoptosis is a viable therapeutic strategy to reduce liver fibrogenesis. Although BH3-only proteins of the Bcl-2 family trigger pro-apoptotic pathways, the BH3-only proteins mediating HSC apoptosis have not been well defined. Our aim, using proteasome inhibition as a model to induce HSC apoptosis, was to examine the BH3-only proteins contributing to cell death of this key liver cell subtype. Methods: Apoptosis was induced by treating LX-2 cells, an immortalized human hepatic stellate cell line, and primary rat stellate cells with the proteasome inhibitor MG-132. Results: Treatment with proteasome inhibitors increased expression of Noxa both at the mRNA (16-fold) and protein (22-fold) levels indicating that both transcriptional and post-translational mechanisms contributed to the increase in cellular Noxa levels. Knockdown of Noxa by siRNA significantly attenuated cell death, mechanistically implicating Noxa as a key apoptotic mediator of proteasome inhibitor-induced cell death. Given the pivotal role for the anti-apoptotic Bcl-2 protein A1 in activated HSC survival, we determined if Noxa bound to this survival protein. Noxa was shown to physically bind the anti-apoptotic Bcl-2 protein A1 by co-immunoprecipitation. Conclusions: Noxa contributes to proteasome inhibitor-induced apoptosis of stellate cells likely by binding A1. Strategies to therapeutically increase Noxa expression may be useful for inducing HSC apoptosis

    Death receptor 5 internalization is required for lysosomal permeabilization by TRAIL in malignant liver cell lines.

    Get PDF
    BACKGROUND & AIMS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity in hepatocellular carcinoma cells is mediated by lysosomal permeabilization. Our aims were to determine which TRAIL receptor, death receptor (DR) 4 or DR5, mediates lysosomal permeabilization and assess whether receptor endocytosis followed by trafficking to lysosomes contributes in this process. METHODS: TRAIL ligand internalization in Huh-7 cells was examined by confocal microscopy using Flag-tagged TRAIL, whereas DR4- and DR5-enhanced green fluorescent protein internalization was assessed by total internal reflection microscopy. Clathrin-dependent endocytosis was inhibited by expressing dominant negative dynamin. RESULTS: Although Huh-7 cells express both TRAIL receptors, short hairpin RNA silencing of DR5 but not DR4 attenuated TRAIL-mediated lysosomal permeabilization and apoptosis. The TRAIL/DR5 complex underwent rapid cellular internalization upon ligand stimulation, whereas the TRAIL/DR4 complex was not efficiently internalized. DR5-enhanced green fluorescent protein internalization was dependent on a dileucine-based internalization motif. Endocytosis of the TRAIL/DR5 complex was dynamin dependent and was required for rapid lysosomal permeabilization and apoptosis in multiple malignant hepatocellular and cholangiocarcinoma cell lines. Upon TRAIL treatment, DR5 colocalized with lysosomes after internalization. Inhibition of DR5 trafficking to lysosomes by Rab7 small interfering RNA also reduced TRAIL-mediated lysosomal disruption and apoptosis. CONCLUSIONS: TRAIL-mediated endocytosis of DR5 with trafficking to lysosomes contributes to lysosomal protease release into the cytosol and efficient apoptosis in malignant liver cell lines

    Death receptor 5 signaling promotes hepatocyte lipoapoptosis.

    Get PDF
    Nonalcoholic steatohepatitis is characterized by hepatic steatosis, elevated levels of circulating free fatty acids (FFA), endoplasmic reticulum (ER) stress, and hepatocyte lipoapoptosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5 (DR5) is significantly elevated in patients with nonalcoholic steatohepatitis, and steatotic hepatocytes demonstrate increased sensitivity to TRAIL-mediated cell death. Nonetheless, a role for TRAIL and/or DR5 in mediating lipoapoptotic pathways is unexplored. Here, we examined the contribution of DR5 death signaling to lipoapoptosis by free fatty acids. The toxic saturated free fatty acid palmitate induces an increase in DR5 mRNA and protein expression in Huh-7 human hepatoma cells leading to DR5 localization into lipid rafts, cell surface receptor clustering with subsequent recruitment of the initiator caspase-8, and ultimately cellular demise. Lipoapoptosis by palmitate was not inhibited by a soluble human recombinant DR5-Fc chimera protein suggesting that DR5 cytotoxic signaling is ligand-independent. Hepatocytes from murine TRAIL receptor knock-out mice (DR(-/-)) displayed reduced palmitate-mediated lipotoxicity. Likewise, knockdown of DR5 or caspase-8 expression by shRNA technology attenuated palmitate-induced Bax activation and apoptosis in Huh-7 cells, without altering induction of ER stress markers. Similar observations were verified in other cell models. Finally, knockdown of CHOP, an ER stress-mediated transcription factor, reduced DR5 up-regulation and DR5-mediated caspase-8 activation upon palmitate treatment. Collectively, these results suggest that ER stress-induced CHOP activation by palmitate transcriptionally up-regulates DR5, likely resulting in ligand-independent cytotoxic signaling by this death receptor

    Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma

    Get PDF
    High-grade epithelial ovarian carcinomas (OC) containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pre-treatment and post-progression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase 2 study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed OC. In six of 12 pre-treatment biopsies, a truncation mutation in BRCA1, RAD51C or RAD51D was identified. In five of six paired post-progression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft (PDX), as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations

    Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells

    Get PDF
    Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state “addicted” to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.The authors would like to thank Dr. Kenneth McCreath for editorial support. This work was supported by the NIH National Cancer Institute Grants R01 CA116623 (to Ruth Lupu) and R01 CA166741 (to Scott H. Kaufmann) and by the U.S. Department of Defense (DOD)-Breakthrough 3 Grants BC151072 and BC151072P1 (to Ruth Lupu). Work in the Menendez laboratory is supported by the Spanish Ministry of Science and Innovation (Grants SAF2016-80639-P and PID2019-10455GB-I00, Plan Nacional de l + D + I, founded by the European Regional Development Fund, Spain) and by an unrestricted research grant from the Fundació Oncolliga Girona (Lliga catalana d’ajuda al malalt de càncer, Girona). Joan Montero acknowledges support from the Ramon y Cajal Programme, Ministerio de Economía y Competitividad (RYC-2015-18357) and the Spanish National Plan “Retos Investigación” I + D + I (RTI2018-094533-A-I00) from the Ministerio de Ciencia, Innovación y Universidades. Elisabet Cuyàs holds a research contract “Miguel Servet” (CP20/00003) from the Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (Spain). All authors have read and agreed to the published version of the manuscript

    Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    Get PDF
    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight ‘best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices' had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globall

    Glucose Induces Pancreatic Islet Cell Apoptosis That Requires the BH3-Only Proteins Bim and Puma and Multi-BH Domain Protein Bax

    Get PDF
    OBJECTIVE: High concentrations of circulating glucose are believed to contribute to defective insulin secretion and beta-cell function in diabetes and at least some of this effect appears to be caused by glucose-induced beta-cell apoptosis. In mammalian cells, apoptotic cell death is controlled by the interplay of proapoptotic and antiapoptotic members of the Bcl-2 family. We investigated the apoptotic pathway induced in mouse pancreatic islet cells after exposure to high concentrations of the reducing sugars ribose and glucose as a model of beta-cell death due to long-term metabolic stress. RESEARCH DESIGN AND METHODS: Islets isolated from mice lacking molecules implicated in cell death pathways were exposed to high concentrations of glucose or ribose. Apoptosis was measured by analysis of DNA fragmentation and release of mitochondrial cytochrome c. RESULTS: Deficiency of interleukin-1 receptors or Fas did not diminish apoptosis, making involvement of inflammatory cytokine receptor or death receptor signaling in glucose-induced apoptosis unlikely. In contrast, overexpression of the prosurvival protein Bcl-2 or deficiency of the apoptosis initiating BH3-only proteins Bim or Puma, or the downstream apoptosis effector Bax, markedly reduced glucose- or ribose-induced killing of islets. Loss of other BH3-only proteins Bid or Noxa, or the Bax-related effector Bak, had no impact on glucose-induced apoptosis. CONCLUSIONS: These results implicate the Bcl-2 regulated apoptotic pathway in glucose-induced islet cell killing and indicate points in the pathway at which interventional strategies can be designed
    corecore