431 research outputs found

    Anisotropic softening of collective charge modes in the vicinity of critical doping in a doped Mott insulator

    Get PDF
    Momentum resolved inelastic resonant x-ray scattering is used to map the evolution of charge excitations over a large range of energies, momenta and doping levels in the electron doped Mott insulator class Nd2−x_{2-x}Cex_xCuO4_4. As the doping induced AFM-SC (antiferromagnetic-superconducting) transition is approached, we observe an anisotropic softening of collective charge modes over a large energy scale along the Gamma to (\pi,\pi)-direction, whereas the modes exhibit broadening (∼\sim 1 eV) with relatively little softening along Gamma to (\pi,0) with respect to the parent Mott insulator (x=0). Our study indicates a systematic collapse of the gap consistent with the scenario that the system dopes uniformly with electrons even though the softening of the modes involves an unusually large energy scale.Comment: 5 pages + 5 Figure

    Charge fluctuations and electron-phonon interaction in the finite-UU Hubbard model

    Full text link
    In this paper we employ a gaussian expansion within the finite-UU slave-bosons formalism to investigate the momentum structure of the electron-phonon vertex function in the Hubbard model as function of UU and nn. The suppression of large momentum scattering and the onset a small-q{\bf q} peak structure, parametrized by a cut-off qcq_c, are shown to be essentially ruled by the band narrowing factor ZMFZ_{\rm MF} due to the electronic correlation. A phase diagram of ZMFZ_{\rm MF} and qcq_c in the whole UU-nn space is presented. Our results are in more than qualitative agreement with a recent numerical analysis and permit to understand some anomalous features of the Quantum Monte Carlo data.Comment: 4 pages, eps figures include

    Statistical analysis of magnetic divertor configuration influence on H-mode transitions

    Get PDF
    DIII-D plasmas are compared for two upper divertor configurations: with the outer strike point on the small angle slot (SAS) divertor target and with the outer strike point on the horizontal divertor target (HT). Scanning the vertical distance between the magnetic null point and the divertor target over a range 0.10–0.16 m is shown to increase the threshold power, Pth , and edge plasma power, PLoss , for the low-to-high confinement (L–H) and H–L transitions respectively, by up to a factor of 1.4. The X-point height scans were performed at three L-mode core plasma line average electron densities, n¯e= 1.2, 2.2 and 3.6 ×1019m−3 , to investigate the density dependence of divertor magnetic configuration influence on Pth . The X-point height, Zx-pt , was further extended across the range 0.16–0.22 m with the more open HT divertor configuration, for which a clear decrease in Pth with increasing Zx-pt is observed. The dependence of Pth on divertor magnetic geometry is further investigated using a time-dependent probability density function (PDF) model and information geometry to elucidate the roles played by pedestal plasma turbulence and perpendicular velocity flows. The degree of stochasticity of the plasma turbulence is observed to be sensitive to the plasma heating rate. The calculated square of the information rate shows changes in the relative density fluctuations and perpendicular velocity PDFs begin 2–5 ms prior to the L–H transition for three plasmas; providing a crucial measurement of the dynamic timescale of external transport barrier formation. Additionally, both information length and rate provide potential predictors of the L–H transition for these plasmas

    Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors

    Full text link
    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.Comment: Original: 4 pages, 4 figures; Replaced: changed and updated content, 12 pages, 6 figure

    Asymptotically exact mean field theory for the Anderson model including double occupancy

    Full text link
    The Anderson impurity model for finite values of the Coulomb repulsion UU is studied using a slave boson representation for the empty and doubly occupied ff-level. In order to avoid well known problems with a naive mean field theory for the boson fields, we use the coherent state path integral representation to first integrate out the double occupancy slave bosons. The resulting effective action is linearized using {\bf two-time} auxiliary fields. After integration over the fermionic degrees of freedom one obtains an effective action suitable for a 1/Nf1/N_f-expansion. Concerning the constraint the same problem remains as in the infinite UU case. For T→0T \rightarrow 0 and Nf→∞N_f \rightarrow \infty exact results for the ground state properties are recovered in the saddle point approximation. Numerical solutions of the saddle point equations show that even in the spindegenerate case Nf=2N_f = 2 the results are quite good.Comment: 19, RevTeX, cond-mat/930502

    The periodic Anderson model from the atomic limit and FeSi

    Get PDF
    The exact Green's functions of the periodic Anderson model for U→∞U\to \infty are formally expressed within the cumulant expansion in terms of an effective cumulant. Here we resort to a calculation in which this quantity is approximated by the value it takes for the exactly soluble atomic limit of the same model. In the Kondo region a spectral density is obtained that shows near the Fermi surface a structure with the properties of the Kondo peak. Approximate expressions are obtained for the static conductivity % \sigma (T) and magnetic susceptibility χ(T)\chi (T) of the PAM, and they are employed to fit the experimental values of FeSi, a compound that behaves like a Kondo insulator with both quantities vanishing rapidly for T→0T\to 0. Assuming that the system is in the intermediate valence region, it was possible to find good agreement between theory and experiment for these two properties by employing the same set of parameters. It is shown that in the present model the hybridization is responsible for the relaxation mechanism of the conduction electrons.Comment: 26 pages and 8 figure
    • …
    corecore