4,242 research outputs found

    Optimasi Pola Tanam Usahatani Sayuran Selada dan Sawi di Daerah Produksi Padi (Studi Kasus di Desa Lam Seunong, Kecamatan Kota Baro, Kabupaten Aceh Besar)

    Get PDF
    . Farming is a plot of land or a part of the earth\u27s surface where the farmers and their families to grow crops or raise livestock. A farmer faced with the enigma to determining the competition of activity in optimizing farming activities. The research was done in Lam Seunong village, Kecamatan Kota Baro, Aceh Besar, the object of research is the farmers who worked in rice, mustard and lettuce land farm. The purpose of this research was to know optimal cropping pattern for mustard and lettuce farming in rice production areas in an effort to increase the optimize income of farmers. The research using purposive sampling techniques with particular sampling, analytical methods using linear programming optimization. The results showed the optimal cropping pattern in the local rice production area is rice and mustard greens in the first season and lettuce in the second season that will obtain maximum revenue of Rp. 76,568,940.00 per period of the rice planting season. With an area of arable land each season is 0.3 hectare for rice in the first season, 0.26 hectare for mustard in the first season, and 0.26 hectare for lettuce second season

    A framework for intracranial saccular aneurysm detection and quantification using morphological analysis of cerebral angiograms

    Get PDF
    Reliable early prediction of aneurysm rupture can greatly help neurosurgeons to treat aneurysms at the right time, thus saving lives as well as providing significant cost reduction. Most of the research efforts in this respect involve statistical analysis of collected data or simulation of hemodynamic factors to predict the risk of aneurysmal rupture. Whereas, morphological analysis of cerebral angiogram images for locating and estimating unruptured aneurysms is rarely considered. Since digital subtraction angiography (DSA) is regarded as a standard test by the American Stroke Association and American College of Radiology for identification of aneurysm, this paper aims to perform morphological analysis of DSA to accurately detect saccular aneurysms, precisely determine their sizes, and estimate the probability of their ruptures. The proposed diagnostic framework, intracranial saccular aneurysm detection and quantification, first extracts cerebrovascular structures by denoising angiogram images and delineates regions of interest (ROIs) by using watershed segmentation and distance transformation. Then, it identifies saccular aneurysms among segmented ROIs using multilayer perceptron neural network trained upon robust Haralick texture features, and finally quantifies aneurysm rupture by geometrical analysis of identified aneurysmic ROI. De-identified data set of 59 angiograms is used to evaluate the performance of algorithms for aneurysm detection and risk of rupture quantification. The proposed framework achieves high accuracy of 98% and 86% for aneurysm classification and quantification, respectively

    Entropic force approach in a noncommutative charged black hole and the equivalence principle

    Full text link
    Recently, Verlinde has suggested a novel model of duality between thermodynamics and gravity which leads to an emergent phenomenon for the origin of gravity and general relativity. In this paper, we investigate some features of this model in the presence of noncommutative charged black hole by performing the method of coordinate coherent states representing smeared structures. We derive several quantities, e.g. temperature, energy and entropic force. Our approach clearly exhibits that the entropic force on a smallest fundamental cell of holographic surface with radius r0r_0 is halted. Accordingly, we can conclude that the black hole remnants are absolutely inert without gravitational interactions. So, the equivalence principle of general relativity is contravened due to the fact that it is now possible to find a difference between the gravitational and inertial mass. In other words, the gravitational mass in the remnant size does not emit any gravitational field, therefore it is experienced to be zero, contrary to the inertial mass. This phenomenon illustrates a good example for a feasible experimental confirmation to the entropic picture of Newton's Second law in very short distances.Comment: 11 pages, 2 figure

    Colorectal carcinoma associated with schistosomiasis: a possible causal relationship

    Get PDF
    The association between schistosomiasis and colorectal malignancy has long been suggested in the literature, but it is not uniformly accepted. In the Far East, considerable evidence supports an etiological link between Schistosoma japonicum and colorectal cancer. However, the available data regarding the role of Schistosoma mansoni in colorectal carcinogenesis are conflicting and most often do not show causality. We report on a patient with sigmoid colonic cancer coexisting with schistosomiasis, and we provide a comprehensive review of the literature regarding the epidemiology and pathobiology of this association

    Nanofluid-based Nanocarbons An Investigation of Thermal Conductivity Performance

    Get PDF
    This paper presents a study of thermal conductivity performance, using a nanofluid-based nanocarbon formulate, with three different types of nanocarbons. NC300, NC200, and commercial carbon nanotube (CNT)were used together with Sodium Dodecyl Sulphate (SDS) as a dispersant, and deionized water as a solvent. A weighted ratio of the nanocarbons (0.4 - 1.0wt%) was set-up and the thermal conductivity was measured at 6°C, 25°C, and 45°C using a KD2 Pro thermal properties analyser. The results showed that NC300 with 1wt% of nanocarbons at 45°C gave the highest improvement of almost 30%, compared to deionized water. Meanwhile, the best nanofluid, based on prepared nanocarbons (NC200) and commercial CNT, showed improvement of more than 9% and 12%, respectively, with the addition of 0.6wt% nanocarbons at 45°C. Morphology analysis using electron microscopy, revealed the structural properties of the nanocarbons. NC300 showed a loose CNT with an average diameter of 70-150nm. NC200 are supported by nanocarbons with an average diameter of 10- 30nm. Meanwhile, the commercial CNT showed a similar characteristic to that of NC300. Even though NC200 had the smallest diameter of all nanocarbons, (which should provide the highest surface area), the larger sizes of the activated carbons, as a nanocarbon support, are expected to reduce thermal conductivity performance

    3D Image Plane from Stereo Camera Calibration on Extrinsic Parameters in Stereo Vision Aplication

    Get PDF
    This paper presents a 3D image plane in a group of target or image during the process of stereo pair calibration. The extrinsic parameters of camera calibration can be viewed in 3D image or scene which contains the rotation and translation of vector. The error re-projection of a single image could determine the less error of distortion during the extraction of chessboard corner each image taken. The distortion model also generates an error coordinate system in pixel value. The 3D image will viewed the result and output of extrinsic parameters during the calibration process.

    Computational Analysis of the Flow and Acoustic Effects of Jet-Pylon Interaction

    Get PDF
    Computational simulation and prediction tools were used to understand the jet-pylon interaction effect in a set of bypass-ratio five core/fan nozzles. Results suggest that the pylon acts as a large scale mixing vane that perturbs the jet flow and jump starts the jet mixing process. The enhanced mixing and associated secondary flows from the pylon result in a net increase of noise in the first 10 diameters of the jet s development, but there is a sustained reduction in noise from that point downstream. This is likely the reason the pylon nozzle is quieter overall than the baseline round nozzle in this case. The present work suggests that focused pylon design could lead to advanced pylon shapes and nozzle configurations that take advantage of propulsion-airframe integration to provide additional noise reduction capabilities

    Solitary, Explosive, Rational and Elliptic Doubly Periodic Solutions for Nonlinear Electron-Acoustic Waves in the Earth’s Magnetotail Region with Cold Electron Fluid and Isothermal Ions

    Get PDF
    A theoretical investigation has been made of electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of Solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation, is used here. Numerical studies have been made using plasma parameters close to those values corresponding to Earth’s plasma sheet boundary layer region reveals different solutions i.e., bell-shaped solitary pulses and singularity solutions at a finite point which called “blowup” solutions, Jacobi elliptic doubly periodic wave, a Weierstrass elliptic doubly periodic type solutions, in addition to the propagation of an explosive pulses. The result of the present investigation may be applicable to some plasma environments, such as earth’s magnetotail region and terrestrial magnetosphere
    • …
    corecore