661 research outputs found

    Spin-Pumping-Induced Inverse Spin Hall Effect in Nb/Ni80Fe20 Bilayers and its Strong Decay Across the Superconducting Transition Temperature

    Get PDF
    We quantify the spin Hall angle θSH and spin-diffusion length lsd of Nb from inverse spin Hall effect (ISHE) measurements in Nb/Ni80Fe20 bilayers under ferromagnetic resonance. By varying the Nb thickness tNb and comparing to a Ni80Fe20/Pt reference sample, room temperature values of θSH and lsd for Nb are estimated to be approximately -0.001 and 30 nm, respectively. We also investigate the ISHE as a function of temperature T for different tNb. Above the superconducting transition temperature Tc of Nb, a clear tNb-dependent T evolution of the ISHE is observed whereas below Tc, the ISHE voltage drops rapidly and is below the sensitivity of our measurement setup at a lower T. This suggests the strong decay of the quasiparticle (QP) charge-imbalance relaxation length across Tc, as supported by an additional investigation of the ISHE in a different sample geometry along with model calculation. Our finding suggests careful consideration should be made when developing superconductor spin Hall devices that intend to utilize QP-mediated spin-to-charge interconversion.This work is supported by EPSRC Programme Grant EP/N017242/1

    Growth, strain, and spin-orbit torques in epitaxial Ni-Mn-Sb films sputtered on GaAs

    Get PDF
    We report current-induced spin torques in epitaxial NiMnSb films on a commercially available epiready GaAs substrate. The NiMnSb was grown by cosputtering from three targets using optimized parameters. The films were processed into microscale bars to perform current-induced spin-torque measurements. Magnetic dynamics were excited by microwave currents, and electric voltages along the bars were measured to analyze the symmetry of the current-induced torques. We found that the extracted symmetry of the spin torques matches those expected from spin-orbit interaction in a tetragonally distorted half-Heusler crystal. Both fieldlike and dampinglike torques are observed in all the samples characterized, and the efficiency of the current-induced torques is comparable to that of ferromagnetic metal/heavy-metal bilayers

    Exchange-field enhancement of superconducting spin pumping

    Get PDF
    A recent ferromagnetic resonance study [Jeon et al., Nat. Mater. 17, 499 (2018)] has reported that spin pumping into a singlet superconductor (Nb) can be greatly enhanced over the normal state when the Nb is coupled to a large spin-orbit-coupling (SOC) spin sink such as Pt. This behavior has been explained in terms of the generation of spin-polarized triplet supercurrents via SOC at the Nb/Pt interface, acting in conjunction with a nonlocally induced magnetic exchange field. Here we report the effect of adding a ferromagnet (Fe) to act as an internal source of an additional exchange field to the adjacent Pt spin sink. This dramatically enhances the spin pumping efficiency in the superconducting state compared with either Pt and Fe separately, demonstrating the critical role of the exchange field in generating superconducting spin currents in the Nb

    Inconsistencies in mapping current distribution in transcranial direct current stimulation

    Get PDF
    IntroductiontDCS is a non-invasive neuromodulation technique that has been widely studied both as a therapy for neuropsychiatric diseases and for cognitive enhancement. However, recent meta-analyses have reported significant inconsistencies amongst tDCS studies. Enhancing empirical understanding of current flow in the brain may help elucidate some of these inconsistencies.MethodsWe investigated tDCS-induced current distribution by injecting a low frequency current waveform in a phantom and in vivo. MR phase images were collected during the stimulation and a time-series analysis was used to reconstruct the magnetic field. A current distribution map was derived from the field map using Ampere's law.ResultsThe current distribution map in the phantom showed a clear path of current flow between the two electrodes, with more than 75% of the injected current accounted for. However, in brain, the results did evidence a current path between the two target electrodes but only some portion ( 25%) of injected current reached the cortex demonstrating that a significant fraction of the current is bypassing the brain and traveling from one electrode to the other external to the brain, probably due to conductivity differences in brain tissue types. Substantial inter-subject and intra-subject (across consecutive scans) variability in current distribution maps were also observed in human but not in phantom scans.DiscussionsAn in-vivo current mapping technique proposed in this study demonstrated that much of the injected current in tDCS was not accounted for in human brain and deviated to the edge of the brain. These findings would have ramifications in the use of tDCS as a neuromodulator and may help explain some of the inconsistencies reported in other studies

    Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni.

    Get PDF
    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.T.D.C.H. and J.W.A.R. acknowledge funding from the EPSRC [EP/I038047/1], the EPSRC Programme grant “Superconducting Spintronics” [EP/N017242/1] and the Leverhulme Trust [IN-2013-033]. S.B. acknowledges support from the Knut and Alice Wallenberg Foundation. X.L.W. and J.H.Z. acknowledge support from the MOST of China [2015CB921500]. Research at SLAC and Stanford was supported through the Stanford Institute for Materials and Energy Sciences (SIMES) which like the SSRL user facility and the scanning SQUID microscopy is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy.This is the final version of the article. It first appeared from Nature Publishing Group at http://dx.doi.org/10.1038/srep30092

    p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Get PDF
    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p\textit{p}-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p\textit{p}-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.The work was funded by the following agencies: Royal Society (‘Superconducting Spintronics’), Leverhulme Trust (IN-2013-033), Schiff Foundation, the EPSRC (EP/N017242/1, EP/G037221/1, EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/1, EP/L016087/1), ERC Grant Hetero2D, EU Graphene Flagship, COST Action MP-1201, MSCA-IFEF-ST No. 656485-Spin3, Outstanding Academic Fellows programme at NTNU, Research Council of Norway (205591, 216700 and 24080)

    Spin-orbit coupling suppression and singlet-state blocking of spin-triplet Cooper pairs

    Get PDF
    An inhomogeneous magnetic exchange field at a superconductor/ferromagnet interface converts spin-singlet Cooper pairs to a spin-polarized triplet state. Although the decay envelope of triplet pairs within ferromagnetic materials is well studied, little is known about their decay in nonmagnetic metals and superconductors and, in particular, in the presence of spin-orbit coupling (SOC). Here, we investigate devices in which singlet and triplet supercurrents propagate into the s-wave superconductor Nb. In the normal state of Nb, triplet supercurrents decay over a distance of 5 nm, which is an order of magnitude smaller than the decay of spin-singlet pairs due to the SOC. In the superconducting state of Nb, triplet supercurrents are not able to couple with the singlet wave function and are thus blocked by the absence of available equilibrium states in the singlet gap. The results offer insight into the dynamics between s-wave singlet and s-wave triplet states

    p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this record.Data availability: The data set generated and analysed during this study are available for access at http://dx.doi.org/10.17863/CAM.6228Electron pairing in the vast majority of superconductors follows the Bardeen–Cooper–Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.Royal SocietyLeverhulme TrustSchiff FoundationEngineering and Physical Sciences Research Council (EPSRC

    p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Get PDF
    Electron pairing in the vast majority of superconductors follows the Bardeen–Cooper–Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K

    Detection of genotoxic and non-genotoxic renal carcinogens in vitro in NRK-52E cells using a transcriptomics approach. (2012).

    Get PDF
    There is a need to develop quick, cheap, sensitive and specific methods to detect the carcinogenic potential of chemicals. Currently there is no in vitro model system for reliable detection of non-genotoxic carcinogens (NGTX) and current tests for detection of genotoxic carcinogens (GTX) can have low specificity. A transcriptomics approach holds promise and a few studies have utilised this technique. However, the majority of these studies have examined liver carcinogens with little work on renal carcinogens which may act via renal-specific NGTX mechanisms. In this study the normal rat renal cell line (NRK-52E) was exposed to sub-toxic concentrations of selected rat renal carcinogens and non-carcinogens (NC) for 6 h, 24 h and 72 h. Renal carcinogens were classified based on their presumed mode of action into GTX and NGTX classes. A whole-genome transcriptomics approach was used to determined genes and pathways as potential signatures for GTX, NGTX and those common to both carcinogenic events in vitro. For some of the GTX compounds an S9 drug metabolising system was included to aid pro-carcinogen activation. Only three genes were commonly deregulated after carcinogen (GTX + NGTX) exposure, one Mdm2 with a detection rate of 67%, and p21 and Cd55 with a detection rate of 56%. However, examination of enriched pathways showed that 3 out of 4 NGTX carcinogens and 4 out of 5 GTX carcinogens were related to known pathways involved in carcinogenesis giving a detection rate of 78%. In contrast, none of the NC chemicals induced any of the above genes or well-established carcinogenic pathways. Additionally, five genes (Lingo1, Hmox1, Ssu72, Lyrm and Usp9x) were commonly altered with 3 out of 4 NGTX carcinogens but not with NC or GTX carcinogens. However, there was no clear separation of GTX and NGTX carcinogens using pathway analysis with several pathways being common to both classes. The findings presented here indicate that the NRK-52E cell line has the potential to detect carcinogenic chemicals, although a much larger number of chemicals need to be used to confirm these findings
    • …
    corecore