7,734 research outputs found

    Spacecraft Requirements Development and Tailoring

    Get PDF
    Spacecraft design is managed through the use of design requirements. Requirements are flowed from the highest level, the overall spacecraft, to systems, subsystems and ultimately individual components. Through the use of requirements, each part of the spacecraft will perform the functions that are required of it and will interface to the rest of the spacecraft. Functional requirements are used to make sure every component performs as expected and interface requirements ensure that each component works within the larger design environment where it operates. Writing good requirements is difficult and the verification of requirements can be expensive and time consuming. Because of this difficulty and expense, it is important that each requirement truly be required and critical to the overall performance of the vehicle. It is also important that requirements can be changed or eliminated as the system matures to minimize verification cost and schedule. The Capsule Parachute Assembly System (CPAS) Project is developing the parachute system for the NASA Multi-Purpose Crew Vehicle (MPCV) Orion Spacecraft. Throughout the development and qualification cycle for CPAS, requirements have been evaluated, added, eliminated, or more generically, tailored, to ensure that the system performs as required while minimizing the verification cost to the Program. One facet of this tailoring has been to delete requirements that do not add value to the overall spacecraft or are not needed. A second approach to minimize the cost of requirement verification has been to evaluate requirements based on the actual design as it has matured. As the design of the parachute system has become better understood, requirements that are not applicable have been eliminated. This paper will outline the evolution of CPAS requirements over time and will show how careful and considered changes to requirements can benefit the technical solution for the overall system design while allowing a Project to control costs

    Uniform Density Theorem for the Hubbard Model

    Full text link
    A general class of hopping models on a finite bipartite lattice is considered, including the Hubbard model and the Falicov-Kimball model. For the half-filled band, the single-particle density matrix \uprho (x,y) in the ground state and in the canonical and grand canonical ensembles is shown to be constant on the diagonal x=yx=y, and to vanish if x≠yx \not=y and if xx and yy are on the same sublattice. For free electron hopping models, it is shown in addition that there are no correlations between sites of the same sublattice in any higher order density matrix. Physical implications are discussed.Comment: 15 pages, plaintex, EHLMLRJM-22/Feb/9

    On orbit validation of solar sailing control laws with thin-film spacecraft

    Get PDF
    Many innovative approaches to solar sail mission and trajectory design have been proposed over the years, but very few ever have the opportunity to be validated on orbit with real spacecraft. Thin- Film Spacecraft/Lander/Rovers (TF-SL Rs) are a new class of very low cost, low mass space vehicle which are ideal for inexpensively and quickly testing in flight new approaches to solar sailing. This paper describes using TF- SLR based micro solar sails to implement a generic solar sail test bed on orbit. TF -SLRs are high area- to-mass ratio (A/m) spacecraft developed for very low cost consumer and scientific deep space missions. Typically based on a 5 μm or thinner metalised substrate, they include an integrated avionics and payload system -on-chip (SoC) die bonded to the substrate with passive components and solar cells printed or deposited by Metal Organic Chemical Vapour Deposition (MOCVD). The avionics include UHF/S- band transceivers, processors, storage, sensors and attitude control provided by integrated magnetorquers and reflectivity control devices. Resulting spacecraft have a typical thickness of less than 50 μm, are 80 mm in diameter, and have a mass of less than 100 mg resulting in sail loads of less than 20 g/m 2 . TF -SLRs are currently designed for direct dispensing in swarms from free flying 0.5U Interplanetary CubeSats or dispensers attached to launch vehicles. Larger 160 mm, 320 mm and 640 mm diameter TF -SLRs utilizing a CubeSat compatible TWIST deployment mechanism that maintains the high A/m ratio are also under development. We are developing a mission to demonstrate the utility of these devices as a test bed for experimenting with a variety of mission designs and control laws. Batches of up to one hundred TF- SLRs will be released on earth escape trajectories, with each batch executing a heterogeneous or homogenous mixture of control laws and experiments. Up to four releases at different points in orbit are currently envisaged with experiments currently being studied in MATLAB and GMA T including managing the rate of separation of individual spacecraft, station keeping and single deployment/substantially divergent trajectory development. It is also hoped to be able to demonstrate uploading new experiment designs while in orbit and to make this capability available to researchers around the world. A suitable earth escape mission is currently being sought and it is hoped the test bed could be on orbit in 2017/18

    Real-time optimisation-based path planning for visually impaired people in dynamic environments

    Get PDF
    Most existing outdoor assistive mobility solutions notify Visually Impaired People (VIP) about potential collisions but fail to provide Optimal Local Collision-Free Path Planning (OLCFPP) to enable the VIP to get out of the way effectively. In this paper, we propose MinD, the first VIP OLCFPP scheme that notifies the VIP of the shortest path required to avoid Critical Moving Objects (CMOs), like cars, motorcycles, etc. This simultaneously accounts for the VIP's mobility constraints, the different CMO types and movement patterns, and predicted collision times, conducting a safety prediction trajectory analysis of the optimal path for the VIP to move in. We implement a real-world prototype to conduct extensive outdoor experiments that record the aforementioned parameters, and this populates our simulations for evaluation against the state-of-the-art. Experimental results demonstrate that MinD outperforms the Artificial Potential Field (APF) approach in effectively planning a short collision-free route, requiring only 1.69m of movement on average, shorter than APF by 90.23%, with a 0% collision rate; adapting to the VIP's mobility limitations and provides a high safe time separation (>5.35s on average compared to APF). MinD also shows near real-time performance, with decisions taking only 0.04s processing time on a standard off-the-shelf laptop

    Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps

    Get PDF
    Ultracold hybrid ion-atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the Yb+^{+} ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion-atom collisions dominates cold ion-atom collisions. For spin dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole interaction and the second-order spin-orbit coupling can play important roles, inducing couplingbetween the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately 5 orders of magnitude higher than the charge-exchange collision rate \cite{kohl13}. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol. Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them

    Multiple Comparison of Medians Using Permutation Tests

    Get PDF
    A robust method is proposed for simultaneous pairwise comparison using permutation tests and median differences. The new procedure provides strong control of familywise error rate and has better power properties than the median procedure of Nemenyi/Levy. It can be more powerful than the Tukey-Kramer procedure using mean differences, especially for nonnormal distributions and unequal sample sizes

    Dielectric-Recovery Characteristic of Power Arcs in Large Air Gaps

    Get PDF
    A satisfactory test technique has been developed for studying the rates of dielectric recovery of large air gaps and other types of power-system insulation. This permits the accurate control of the fault conditions so that all practical types of fault currents can be studied. These are: (1) very high magnitude short-duration surges typical of lightning currents; (2) currents of power-system frequencies; and (3) intermediate duration currents such as those which might result from high-frequency current zeros produced by natural system oscillations. Results are presented showing the rate of dielectric recovery of 3-, 6-, and 11-inch standard rod gaps for power frequency fault currents up to 700 amperes. Electrode cooling effects were found important at 3-inch gap spacings but not at six inches or above. The 11-inch gap data are proportionately higher than the 6-inch data indicating that the results can be extrapolated. The data show that for arcs of a few cycles actual duration has little effect on rate of recovery. A range of current magnitudes from 50 to 700 amperes causes only about a 2-to-1 variation in rate of recovery. For the normal ratios of transmission-line insulation level to operating voltage (about four to one) minimum delay times of from 0.025 second for 100-ampere faults to 0.05 second for 700 ampere faults are required before the recovery voltage reaches the magnitude of the normal applied voltage. Time intervals of 0.05 to 0
    • …
    corecore