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Multiple Comparison Of Medians Using Permutation Tests 

           Scott J. Richter    Melinda H. McCann 
      University of North Carolina at Greensboro          Oklahoma State University 

 
 
A robust method is proposed for simultaneous pairwise comparison using permutation tests and median 
differences. The new procedure provides strong control of familywise error rate and has better power 
properties than the median procedure of Nemenyi/Levy. It can be more powerful than the Tukey-Kramer 
procedure using mean differences, especially for nonnormal distributions and unequal sample sizes. 
 
Key words: Simultaneous inference, pairwise comparisons, median difference, permutation test. 
 
 

Introduction 
 
The technique of using permutation methods for 
multiple comparisons has received relatively 
little attention in the literature. Nemenyi (1963) 
and later Levy (1979) proposed a procedure 
using medians, with the maximum of the 
differences of pairwise Mood statistics used to 
construct the reference distribution. Miller 
(1966, 1981), and more recently Higgins (2004), 
proposed a permutation version of the Tukey-
Kramer method (Tukey, 1949; Kramer, 1956), 
where the range of the sample means is 
calculated for each permutation of observations 
among the k groups to obtain the reference 
distribution. The mean difference for each pair 
of means is then compared to this reference 
distribution to determine statistically significant 
differences. However, when distributions are 
skewed or there are outliers in the data, it may 
be desirable to make comparisons of medians 
rather than means. Thus, a logical extension of 
Miller’s procedure is to replace means by 
medians. Consider the following example.   
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Example 

Manly (1997) reported the data in Table 
1 based on articles by Powell & Russell (1984, 
1985) and Linton et al (1989). The data 
represent dry biomass (in mg) of ants for 24 
eastern horned lizards, taken in three months in 
1980. 

It is desired to determine which, if any, 
of the months have different consumptions. The 
relation between the means and medians for 
each month suggests that the distributions of 
biomass are skewed, and that the means may not 
be representative of monthly consumption. Thus, 
comparisons based on medians may be more 
appropriate. 

Both the median procedure of Nemenyi 
and Levy and Miller’s procedure permute freely 
across all groups (unrestricted randomization). 
However, this unrestricted randomization 
scheme has been criticized. Petrondas and 
Gabriel (1983) contend that Miller’s approach 
does not control the familywise error rate 
(FWE): the probability of making at least one 
false declaration of inequality, since the test for 
any subset hypothesis that a pair of means is 
equal should be based on permuting 
observations only among the groups whose 
distributions are assumed equal under the null 
hypothesis. The FWE actually is controlled 
under the overall null hypothesis that all k 
distributions have the same location—that is, in 
the weak sense (Hochberg & Tamhane, 1987), 
but not necessarily under a subset pairwise null 
hypothesis that requires only the two 
distributions being   considered   to   have   equal  
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location, that is, in the strong sense (Hochberg & 
Tamhane, 1987). Accordingly, both Petrondas 
and Gabriel (1983) and Hochberg and Tamhane 
(1987) suggest performing each pairwise test 
separately using a Bonferroni adjustment. 
Similarly, Hochberg and Tamhane (1987) and 
Ryan and Ryan (1980) note that the median 
procedure of Nemenyi/Levy is not based on a 
joint testing family, and thus does not control the 
FWE. Hochberg and Tamhane (1987) instead 
suggest permuting separately within each pair 
(restricted randomization) and utilizing the 
maximum of pairwise Mood statistics to derive 
the reference distribution.  

A new testing procedure is proposed 
based on the procedure of Nemenyi/Levy, using 
median difference statistics instead of 
differences between Mood statistics, and  Type I 
error and power properties are compared to the 
new procedure to those of the Nemenyi/Levy 
procedure, pairwise tests using a Bonferroni 
adjustment, and also to the Tukey-Kramer 
procedure based on mean differences, which 
assumes normally distributed populations.  
 

Methodology 
 
Throughout, consider a one-way layout with k 
groups, where iF  is the common continuous 
distribution function for the ith group, in  is the 
sample size of the ith group, and 

1 2 kN n n n= + + ⋅⋅⋅+ . Further, let iμ  be the 
location parameter associated with the ith 

distribution and ˆiμ  be the sample median for 
the ith group. Distributions are assumed identical 
for all treatments except for possible location 
differences. 
 

 
Permutation-based Multiple Comparison 
Procedures: 
 Miller (1966, 1981) proposed a 
permutation analog to the Tukey-Kramer 
procedure for multiple pairwise comparison of 
several means. The reference distribution for 
Miller’s method was based on the statistic, 

1max i j k i jY Y≤ < ≤ − , where iY  and jY  are the 

respective sample means of groups i and j . The 
reference distribution consists of the values of 

this statistic for all 
1 2

!
! ! !k

N
n n n⋅ ⋅ ⋅

 possible 

permutations of the observed data. Each 
pairwise absolute difference is compared to this 
distribution to determine statistical significance. 
Bonferroni-adjusted pairwise tests suggested by 
Hochberg and Tamhane (1987) and Petrondas 
and Gabriel (1983) will also be considered. 

Nemenyi (1963) and later Levy (1979) 
also proposed an analog to the Tukey-Kramer 
procedure, but based on Mood’s (1950) median 
test, as follows. First, calculate the grand median 
for the pooled sample of 1 2 kN n n n= + + ⋅⋅⋅+  
observations. Then determine iM , the number 
of observations in the ith sample that exceed the 
grand median. The test statistic for comparing 

any pair is ji

i j

MM
n n

− . The reference 

distribution is based on the distribution of 

1max ji
i j k

i j

MM
n n≤ < ≤ − , the maximum value of 

the test statistic over all pairs, which is 
calculated for a large set of random 
reassignments of observations to groups. As 
with Miller’s method, an observation may be 

Table 1.  Dry biomass of ants for 24 eastern horned lizards, taken in three months in 1980. 

 
Month 

 
Dry biomass (mg) 

 
Median 

 
Mean 

June 13, 242, 105 105.0 120.0 
July 8, 59, 20, 2, 245 20.0 66.8 

August 515, 488, 88, 233, 50, 600, 82, 40, 52, 1889 160.5 403.7  
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reassigned to any of the k groups to form a new 
permutation. Hochberg and Tamhane (1987) 
suggest computing a separate grand median for 
each pair and calculating the test statistic above. 
The maximum over all pairs is then found for a 
large set of random reassignments, where 
reassignments are restricted to within each pair, 
and these values form the reference distribution.  
 
A New Method Using Median Differences: 

In situations involving skewed 
distributions or outliers it may be more 
appropriate to consider medians instead of 
means. Thus, we propose multiple comparison 
procedures based on median differences. The 
method of Nemenyi/Levy, based on Mood 
statistics, does utilize medians, but does not 
incorporate the magnitude of the difference 
between medians. It is believed that there may 
be situations when incorporating this 
information could lead to a more sensitive 
procedure.   
 Analogous to the mean-based procedure 
of Miller, the reference distribution for our new 
procedure is based on the distribution of 

1 ˆ ˆmax i j k i jμ μ≤ < ≤ − , the maximum of all 

pairwise median differences, calculated for a 
large set of random reassignments of 
observations to groups. Each pairwise absolute 
median difference is compared to this reference 
distribution to determine statistical significance. 
Both methods of permuting discussed in Section 
2.1, namely restricted and unrestricted, are 
investigated. 
 
Restricted Randomization Guarantees FWE 
Control: 
 The strongest argument against 
unrestricted permuting is that it does not 
necessarily provide strong control of the FWE. 
Restricted permuting, however, does provide 
strong control. 

Consider k  independent samples from 
distributions that differ by at most a location 
parameter. That is, for 
, 1, 2,...,  with ,i j k i j= <  

( )( )i j ijF x F x= − Δ . (Throughout Section 2.3 

let , 1, 2,...,  with i j k i j= < .) The null 

hypothesis then involves 
2
k⎛ ⎞
⎜ ⎟
⎝ ⎠

 pairwise 

hypotheses of the form 0 : 0ij ijH Δ = . Now 
consider the permutation distribution of median 
differences from samples i  and j , and let 

( )ijD α  be the 1 α−  percentile of this 
permutation distribution. Similarly, define 

max ( )D α  to be the 1 α−  percentile of the 
permutation distribution for the maximum 

median difference among all 
2
k⎛ ⎞
⎜ ⎟
⎝ ⎠

 pairs.  

First consider the case under the 
complete null hypothesis where all 0ijΔ = . Let 
the calculated median difference from samples i  
and j  be denoted by ijD . Under the complete 
null hypothesis the probability that a calculated 
median difference from a particular pair of 
samples in a given permutation is the maximum 

difference is 
1

2
k −
⎛ ⎞
⎜ ⎟
⎝ ⎠

. Thus, each pair of samples 

will contribute 
1

2
k −
⎛ ⎞

α ⎜ ⎟
⎝ ⎠

 of the values from the 

pairwise difference permutation distribution to 
the maximum difference permutation 
distribution. 
Consequently, the probability that any observed 
difference from a particular pair exceeds 

max ( )D α , the comparisonwise error rate, is 
1

2
k −
⎛ ⎞

α ⎜ ⎟
⎝ ⎠

. Alternatively, the familywise error rate 

is given by 
            

    
( )

( )
max

, 1,..., , 2

(declare at least one pair different in location 
| all pairs have equal location)

( ) /
2 2

.

ij
ki j i j

P

k k
P D D α α

α

⎡ ⎤= <⎢ ⎥⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ≥ =∑ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

=

 

 
This shows that using the permutation 
distribution of the maximum difference controls 
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the FWE in the weak sense (Hochberg & 
Tamhane, 1987). 

Now consider the case where only 

2
k

t ⎛ ⎞
< ⎜ ⎟
⎝ ⎠

 of the pairwise null hypotheses are 

indeed true. For any permutation, a difference 
from one of these t pairs with a true pairwise 
null hypothesis is less likely to be the maximum 

difference than differences from the 
2
k

t⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

pairs where 0ijΔ ≠ . Consequently, the 
comparisonwise error rate is 

( )( )
1

max 2ij

k
P D D

−
⎛ ⎞

≥ α ≤ α ⎜ ⎟
⎝ ⎠

. Thus, the 

familywise error rate, the probability of rejecting 
at least one of the t  true null hypotheses, is    
 

(reject at least one true null hypothesis |

 true null hypotheses) / .
2

P

k
t t α α

⎛ ⎞⎛ ⎞
≤ <⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

 
Thus, the FWE is controlled at level α  

for any combination of t true and 
2
k

t⎛ ⎞
−⎜ ⎟

⎝ ⎠
 false 

hypotheses, and the FWE is controlled in the 
strong sense (Hochberg & Tamhane, 1987).  
 
Alternatively, the FWE may be controlled by 
performing separate two-sample permutation 

tests and utilizing 
1

2
k

α
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

, a Bonferroni 

adjustment, as the significance level for each 
individual comparison. Based on their 
performance in the normal theory setting, it is 
expected that a Tukey-type permutation 
procedure will generally be less conservative 
than a procedure utilizing pairwise permutation 
tests with a Bonferroni adjustment. 
 
Simulation Study 

A simulation was conducted to evaluate 
five permutation procedures: 

 
1. A modification of Miller’s (1966, 1981) 

procedure, using medians instead of 

means and unrestricted randomization 
(MEDUR); 

2. A modification of (1) using restricted 
randomization (MEDR); 

3. Separate Bonferroni-adjusted pairwise 
permutation tests for median differences 
(MEDBON); 

4. The procedure of Nemenyi (1963)/Levy 
(1979) based on differences between 
Mood statistics and unrestricted 
randomization (MOODUR); 

5. A modification of (4), using restricted 
randomization (MOODR). 
 
The following model was assumed to 

generate the data:  
ij i ijy eμ= + , 

where ijy =  the jth observation for the ith 

treatment iμ =  the location parameter for the ith 
treatment ije =  the random error associated with 
the jth observation for the ith treatment. The 

ije are assumed independent and identically 
distributed.  
 
Several different error distributions were 
examined: 
 

• Normal ( 20, 1μ σ= = );  
• Uniform [-3,3];  
• Exponential ( 3λ = );  
• Double exponential (Exp( 3λ = ) – E

 xp( 3λ = ));  
• Location-contaminated normal (N (0,1) 

with 10% contamination from N (9,1)).  
 
These choices encompass two symmetric, 
nonnormal distributions: the uniform (lighter-
tailed than normal) and the double exponential 
(heavier-tailed than normal); and two skewed 
distributions: the exponential and contaminated 
normal. Models contained either three or five 
groups, and both equal and unequal sample sizes 
were examined. In most cases the total number 
of permutations possible is prohibitive, and thus 
a random sample of permutations was used to 
estimate the p-value for any given test. Keller-
McNulty and Higgins (1987) examined the issue 
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of randomly sampling the permutations, and 
concluded that little is to be gained by taking 
more than 1600 randomly sampled 
permutations. Thus, each permutation test was 
based on a reference distribution estimated via a 
slightly conservative 2000 randomly sampled 
permutations, and the estimated proportions of 
rejections were based on 2000 randomly 
generated samples. The simulations were 
implemented using Resampling Stats version 5.0 
(Resampling Stats Inc., 2000). 

The familywise error rate (FWE) and 
any-pair power (Shaffer, 1995), the probability 
of detecting at least one true difference, are 
reported in the Tables 2-12. For the Tukey-type 
procedures based on medians, in cases where 
either all groups have identical locations or all 
groups had different locations, these were 
estimated by comparing the maximum pairwise 
difference from among the samples to the 
respective reference distribution, and counting 
the number of random samples where this 
maximum was in the top 5% of the reference 
distribution. In cases where some pairs had 
identical locations while others pairs differed in 
location, the FWE was estimated as the 
proportion of permutations where at least one of 
the true null hypotheses was rejected (strong 
FWE). 
 

Results 
 

Comparison of Median-based Procedures 
Type I Error 

All median-based procedures controlled 
the FWE in the strong sense (See Tables 2-4). In 
fact, in the cases where some pairs had equal 
locations and some did not, the probability of at 
least one false rejection was usually lower than 
the case where all locations were equal. As 
Petrondas and Gabriel (1983) admitted, their 
counterexample was very small, and, “for 
realistic, larger examples the corresponding tests 
(using unrestricted permuting) may be both valid 
and useful.” It is also worth noting, however, 
that even though the unrestricted permuting 
method did not exhibit inflated FWE rates for 
either the median difference statistic or the 
Mood statistic, in cases where there was a 
difference between unrestricted and restricted 
FWE rates, the unrestricted FWE was almost 

always higher. This was true especially with 
unequal sample sizes, where error rates more 
than twice as large for unrestricted permuting 
were not uncommon. As we shall see in the next 
section, however, higher FWE rates did not 
typically lead to more powerful tests. In light of 
this evidence and the earlier cited criticisms of 
unrestricted randomization, as well as the fact 
that power is generally at least as good under 
restricted randomization, only procedures using 
restricted randomization will be considered in 
the remainder of the discussion. 
 
Power 

Consider first the case of equal sample 
sizes. With small group sample size ( 5n = ) and 
small location differences ( 1 2 30, 2Δ = Δ = Δ =  
or 1 2 3 4 52, 0Δ = Δ = Δ = Δ = Δ = ), MEDR 
always had the highest power among the median 
procedures (See Tables 5 and 7). When there 
were larger location differences 
( 1 2 32, 5Δ = Δ = Δ = or 1 2 32,Δ = Δ = Δ

4 53, 0= Δ = Δ = ),MOODR often had highest 
power for normal and contaminated normal data 
(e.g., see Table 6). On the other hand, 
MEDBON had no power with 5n =  (See 
Tables 5-7). With group sample size 10n =  
(e.g., see Table 8), MEDR was often most 
powerful for heavier-tailed distributions 
(exponential, double exponential), especially 
with larger location differences and more groups 
(e.g., 3 groups, 10n = , 1 2 32, 5Δ = Δ = Δ = ; 5 
groups, 10,n = 1 2 3 4 52, 0Δ = Δ = Δ = Δ = Δ = ) 
while MOODR was most powerful for the latter 
five group scenarios for contaminated normal 
data. MEDBON often had higher power than 
MOODR, but always trailed MEDR. For 

20n = , MEDBON was most powerful for 
uniform and exponential data, and all three 
median-based procedures had similar power for 
the other distributions (See Table 9). MEDR 
performed most consistently across different 
scenarios, was never   much less   powerful  than  
any other procedure for nonnormal data, and 
was often substantially more powerful. For 
example, in Table 11, MEDR had power  almost 
200 times the power of MOODR (0.591 versus 
0.003), while the largest power advantage for  
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Table 2.  FWE – Proportion of times at least one true null hypothesis was rejected at 0.05α = , 
three groups, 5in = , locations 1 2 3 0Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.053 0.046 0.047 0.037 0.027 
MEDUR 0.035 0.041 0.054 0.040 0.019 
MOODR 0.013 0.018 0.017 0.019 0.007 
MOODUR 0.009 0.013 0.011 0.013 0.003 
TUKEY 0.053 0.059 0.060 0.044 0.026 

 
 

Table 3.  FWE – Proportion of times at least one true null hypothesis was rejected at 0.05α = , 
five groups, 5in = , locations 1 2 3 4 52; 0Δ = Δ = Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.000 0.009 0.009 0.014 0.000 
MEDUR 0.000 0.023 0.017 0.021 0.001 
MOODR 0.001 0.008 0.005 0.003 0.001 
MOODUR 0.001 0.008 0.005 0.003 0.001 
TUKEY 0.024 0.025 0.025 0.023 0.025 

 
Table 4.  FWE – Proportion of times at least one true null hypothesis was rejected at 0.05α = , 

five groups, 1 2 3 4 53, 4, 5, 6, 7n n n n n= = = = = , locations 1 2 3 4 52; 0Δ = Δ = Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.001 0.005 0.008 0.006 0.003 
MEDUR 0.003 0.013 0.025 0.014 0.026 
MOODR 0.001 0.005 0.007 0.001 0.002 
MOODUR 0.001 0.005 0.007 0.001 0.002 
TUKEY 0.000 0.000 0.000 0.001 0.001  
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Table 5.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 
three groups, 5in = , locations 1 2 30, 2Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.579 0.269 0.098 0.151 0.336 
MEDUR 0.487 0.256 0.095 0.113 0.297 
MEDBON 0.000 0.000 0.000 0.000 0.000 
MOODR 0.238 0.064 0.049 0.080 0.133 
MOODUR 0.131 0.045 0.039 0.055 0.070 
TUKEY 0.818 0.342 0.125 0.186 0.478 

 
Table 6.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

three groups, 5in = , locations 1 2 30, 2, 5Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform D-Exp Exponential Cont-Normal 

MEDR 0.786 0.707 0.262 0.410 0.455 
MEDUR 0.976 0.716 0.220 0.422 0.581 
MEDBON 0.000 0.000 0.000 0.000 0.000 
MOODR 0.888 0.469 0.156 0.302 0.537 
MOODUR 0.820 0.377 0.127 0.248 0.499 
TUKEY 1.000 0.979 0.350 0.620 0.590 

 
Table 7.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

five groups, 5in = , locations 1 2 3 4 52; 0Δ = Δ = Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.637 0.369 0.059 0.137 0.396 
MEDUR 0.400 0.293 0.078 0.104 0.245 
MEDBON 0.000 0.000 0.000 0.000 0.000 
MOODR 0.477 0.112 0.096 0.135 0.303 
MOODUR 0.477 0.112 0.096 0.135 0.303 
TUKEY 0.886 0.422 0.000 0.186 0.540  
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Table 8.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 
three groups, 10in = , locations 1 2 30, 2, 5Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 1.000 0.996 0.661 0.949 0.923 
MEDUR 1.000 0.990 0.635 0.904 0.911 
MEDBON 1.000 1.000 0.574 0.947 0.854 
MOODR 0.888 0.469 0.156 0.302 0.537 
MOODUR 0.820 0.377 0.127 0.248 0.499 
TUKEY 1.000 1.000 0.627 0.890 0.940 

 
Table 9.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

three groups, 20in = , locations 1 2 30, 2Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double-Exp. Exponential Cont-Normal 

MEDR 1.000 0.664 0.374 0.664 0.991 
MEDUR 1.000 0.676 0.361 0.676 0.979 
MEDBON 1.000 0.776 0.342 0.776 0.983 
MOODR 0.998 0.569 0.384 0.648 0.996 
MOODUR 0.997 0.529 0.352 0.614 0.992 
TUKEY 1.000 0.550 0.278 0.550 0.436 

 
Table 10.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

three groups, 1 2 34, 5, 6n n n= = = , locations 1 3 20, 2Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double–Exp. Exponential Cont.-Normal 

MEDR 0.607 0.260 0.090 0.129 0.287 
MEDUR 0.558 0.262 0.093 0.121 0.264 
MEDBON 0.332 0.108 0.047 0.100 0.203 
MOODR 0.147 0.041 0.060 0.070 0.125 
MOODUR 0.147 0.041 0.060 0.070 0.125 
TUKEY 0.220 0.035 0.005 0.012 0.051 
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MOODR was less than 1.2 times that of MEDR, 
0.537 versus 0.455 See Table 6). Table 8 shows, 
however, that when the sample size increased 
from 5n =  to 10,n =  MOODR no longer had a 
power advantage over MEDR (in fact had 
substantially less power) for the same location 
pattern as in Table 6. 

When sample sizes were unequal and 
group locations were different, the power of all 
tests depended on the pattern of location 
parameters. MOODR was by far the most 
affected by the pattern of differences, with 
virtually no power in the most extreme case 
(smallest samples with nonzero location 
parameters and largest with zero location  

 
 

 
 

 
parameters), while sometimes having the highest 
power with the situation reversed. In contrast, 
MEDR maintained respectable power for all 
location patterns (See Tables 11 and 12). 
MEDBON displayed low power when sample  
sizes were small, especially with five groups (10  
comparisons). Power was higher with larger 
sample sizes, but still generally trailed the other 
two procedures. Many other scenarios were 
examined. These results are available at 
www.uncg.edu/~sjricht2/Research.html. 
 

Table 11.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 
three groups, 1 2 34, 5, 6n n n= = = , normally distributed data. 

  
Location pattern 

 
Procedure 

1 2 32, 0Δ = Δ = Δ =  1 3 20, 2Δ = Δ = Δ =  1 2 30, 2Δ = Δ = Δ =  

MEDR 0.591 0.607 0.711 
MEDUR 0.656 0.558 0.478 
MEDBON 0.302 0.332 0.458 
MOODR 0.003 0.147 0.654 
MOODUR 0.003 0.147 0.654 
TUKEY 0.219 0.220 0.228 

 
Table 12.  Power – Proportion of times at least one difference detected at 0.05α = , five groups, 

1 2 3 4 53, 4, 5, 6, 7n n n n n= = = = = , normally distributed data. 
  

Location pattern 
 
 
 
Procedure 

1 2

3 4 5

2;
0

Δ = Δ =
Δ = Δ = Δ =

 1 2 3

4 5

0; 2;
0

Δ = Δ = Δ =
Δ = Δ =

1 2

3 4 5

0;
2; 0

Δ = Δ =
Δ = Δ = Δ =

  1 2 3

4 5

0;
2

Δ = Δ = Δ =
Δ = Δ =

MEDR 0.546 0.451 0.556 0.702 
MEDUR 0.516 0.372 0.322 0.298 
MEDBON 0.003 0.000 0.041 0.002 
MOODR 0.001 0.001 0.416 0.832 
MOODUR 0.001 0.001 0.430 0.831 
TUKEY 0.000 0.032 0.025 0.024 
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Power Advantages of Median-based Procedures 

The power of the median-based 
procedures was compared to that of the Tukey-
Kramer procedure using means. For normally 
distributed data and equal sample sizes, TUKEY  
always had higher power than the median-based 
procedures (See Tables 4-6). However, with 
unequal sample sizes, the median based 
procedures often had higher power even for 
normally distributed data (See Tables 10, 11 and  
12). This may not be surprising, since the 
Tukey-Kramer procedure has been shown to be 
conservative for unequal sample sizes (Hayter, 
1984). For nonnormally distributed data, the 
median-based procedures often had higher 
power, especially with larger sample sizes. 

 
 
 

 
Conclusion 

The maximum median difference test (MEDR) 
is recommended as a robust pairwise 
comparison procedure when strong control of 
FWE is desired. The maximum Mood difference 
test (MOODR) is not recommended, due to poor 
power properties, especially for unequal sample 
sizes. Likewise, the procedure of using separate 
median difference tests with a Bonferroni 
adjustment (MEDBON) generally had less 
power and no power in some cases with small 
sample sizes. Tukey’s HSD (TUKEY) is 
preferred when groups have small and equal 
samples sizes ( 5n = ), even for nonnormal data, 
and also with normal data, regardless of the 
sample size. In all other cases, the maximum 
median difference test (MEDR) is preferred. 
With nonnormal data and large ( 20n ≥ ) equal 

Table 13.  P-values for pairwise comparisons. 

     
 

Procedure 
Comparison 
 

Median 
difference MEDR MOODR MEDUR MOODUR TUKEY 

1vs2 85.0 0.950 1.000 0.794 0.974 0.985 
1vs3 55.5 0.996 0.566 0.834 0.534 0.605 
2vs3 140.5 0.691 0.295 0.645 0.345 0.372 

 
Table 14.  Average times to complete an interview for four interviewers. 

 
Interviewer 

 
Average time (min.) 

 
Median 

 
Mean 

1 10.0, 25.0, 40.1, 29.2, 4.1 25.0 21.6 
2 15.0, 5.2, 55.3, 15.1, 23.2 15.1 22.8 
3 19.1, 25.4, 8.3 19.1 17.6 
4 5.1, 9.2, 14.1 9.2 9.5 

 
Table 15.  P-values for pairwise comparisons. 

     
 

Procedure 
Comparison 

 
Median 

difference MEDR MOODR MEDUR MOODUR TUKEY 
1vs2 9.9 0.851 1.000 0.920 1.000 0.999 
1vs3 5.9 1.000 1.000 0.978 0.915 0.980 
1vs4 15.8 0.211 0.450 0.525 0.362 0.666 
2vs3 4.0 1.000 1.000 1.000 0.915 0.961 
2vs4 5.9 1.000 0.450 0.978 0.362 0.607 
3vs4 9.9 0.851 0.824 0.920 0.915 0.900 
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sample sizes, and in all cases with unequal 
sample sizes, MEDR had higher power than 
TUKEY. MEDR never performed poorly with 
regard to power, and was often much more 
powerful than the other median-based 
procedures considered. 
 
Example 1 

The first example is based on the data in 
the Introduction (See Table 1.) Table 13 gives p-
values for the three pairwise comparisons, for 
the MEDR, MEDUR, MOODR, MOODUR and 
TUKEY procedures. Notice that the Mood tests 
yield the most evidence for a difference between 
months two and three. This is an example of a 
scenario studied in the simulations, namely 
small samples with differences between all pairs, 
with larger differences associated with the larger 
samples, a case where the Mood tests often had 
the highest power. 
 
Example 2: 

Consider data reported by Gibbons 
(1985, p. 202) in Table 14. The data represent 
average times spent to complete an interview for 
four interviewers. 

It is desired to test if there is evidence 
that certain interviewers tend to have longer 
interview times. Table 15 gives p-values for the 
six pairwise comparisons. Here MEDR provides 
the strongest evidence of location difference 
between the pair with the largest observed 
difference, interviewers 1 and 4. Resampling 
Stats code for calculating the permutation p-
values in this example is provided in the 
Appendix. 
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Appendix 

 
Below is Resampling Stats® code to calculate 
the permutation p-values in Example 2. The 
program can be modified to handle different 
numbers of groups. 
 
'set maximum vector size 
 maxsize default 500000 
 seed 1234 
 
'create data vectors 
 data (10 25 40.1 29.2 4.1) d1 
 data (15 5.2 55.3 15.1 23.2) d2 
 data (19.1 25.4 8.3) d3 
 data (5.1 9.2 14.1) d4 
  
'combine data vectors for unrestricted 
randomization 
 concat d1 d2 d3 d4 dat 
 
'create pairwise data vectors for restricted 
randomization 
 concat d1 d2 dat12 
 concat d1 d3 dat13 
 concat d1 d4 dat14 
 concat d2 d3 dat23 
 concat d2 d4 dat24 
 concat d3 d4 dat34 
 
'obtain permutation distribution 
 let nrand=2000 
 repeat nrand 
 
'unrestricted randomization  
 shuffle dat sdat 
 take sdat 1,5 sdat1 
 take sdat 6,10 sdat2 
 take sdat 11,13 sdat3 
 take sdat 14,16 sdat4 

'restricted randomization 
 shuffle dat12 sdat12 
 take sdat12 1,5 sdat121 
 take sdat12 6,10 sdat122 
 shuffle dat13 sdat13 
 take sdat13 1,5 sdat131 
 take sdat13 6,8 sdat133 
 shuffle dat14 sdat14 
 take sdat14 1,5 sdat141 
 take sdat14 6,8 sdat144 
 shuffle dat23 sdat23 
 take sdat23 1,5 sdat232 
 take sdat23 6,8 sdat233 
 shuffle dat24 sdat24 
 take sdat24 1,5 sdat242 
 take sdat24 6,8 sdat244 
 shuffle dat34 sdat34 
 take sdat34 1,3 sdat343 
 take sdat34 4,6 sdat344 
 
'compute medians of shuffled data 
              median sdat1 med1 
              median sdat2 med2 
              median sdat3 med3 
 median sdat4 med4 
              median sdat121 med121 
              median sdat122 med122 
              median sdat131 med131 
              median sdat133 med133 
 median sdat141 med141 
 median sdat144 med144 
              median sdat232 med232 
              median sdat233 med233 
 median sdat242 med242 
 median sdat244 med244 
 median sdat343 med343 
 median sdat344 med344 
 
'compute median differences of shuffled data,  
unrestricted randomization 
              subtract med1 med2 med12 
 subtract med1 med3 med13 
 subtract med1 med4 med14 
 subtract med2 med3 med23 
 subtract med2 med4 med24 
 subtract med3 med4 med34 
 
'create one vector, take absolute values 
 concat med12 med13 med14 med23 
med24 med34  
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 medvec abs medvec medvec 
 
'compute median differences of shuffled data,  
restricted randomization 
              subtract med121 med122 med12r 
 subtract med131 med133 med13r 
 subtract med141 med144 med14r 
 subtract med232 med233 med23r 
 subtract med242 med244 med24r 
 subtract med343 med344 med34r 
 
'create one vector, take absolute value 
 concat med12r med13r med23r medvecr 
 abs medvecr medvecr 
 
'compute maximum absolute difference 
              max medvec qmedsim 
              max medvecr qmedsimr 
 
'compute Mood statistics, unrestricted 
randomization 
 median sdat grndmed 
 count sdat1 >= grndmed m1 
 count sdat2 >= grndmed m2 
 count sdat3 >= grndmed m3 
 count sdat4 >= grndmed m4 
 median sdat12 gm12 
 count sdat1 >= gm12 m121 
 count sdat2 >= gm12 m122 
 median sdat13 gm13 
 count sdat1 >= gm13 m131 
 count sdat3 >= gm13 m133 
 median sdat14 gm14 
 count sdat1 >= gm14 m141 
 count sdat4 >= gm14 m144 
 median sdat23 gm23 
 count sdat2 >= gm23 m232 
 count sdat3 >= gm23 m233 
 median sdat24 gm24 
 count sdat2 >= gm24 m242 
 count sdat4 >= gm24 m244 
 median sdat34 gm34 
 count sdat3 >= gm34 m343 
 count sdat4 >= gm34 m344 
 subtract m1 m2 m12 
 subtract m1 m3 m13 
 subtract m1 m4 m14 
 subtract m2 m3 m23 
 subtract m2 m4 m24 
 subtract m3 m4 m34 
 

'Mood statistics are m12-m34 
 
'create one vector, take absolute values 
 concat m12 m13 m14 m23 m24 m34 
mood 
 abs mood mood 
 
'compute maximum absolute difference 
 max mood maxmood 
 
'Compute Mood statistics, restricted 
randomization 
 subtract m121 m122 m12r 
 subtract m131 m133 m13r 
 subtract m141 m144 m14r 
 subtract m232 m233 m23r 
 subtract m242 m244 m24r 
 subtract m343 m344 m34r 
 
'Mood statistics are m12r-m34r 
 
'create one vector, take absolute values 
 concat m12r m13r m14r m23r m24r 
m34r  
 moodr abs moodr moodr 
 
'compute maximum absolute difference 
 max moodr maxmoodr 
 
'save statistic values for reference distributions 
              score qmedsim qmddist 
 score qmedsimr qmddistr 
 score maxmood qmood 
 score maxmoodr qmoodr 
        end 
 
'compute medians and differences of observed 
data                
 median d1 obsmed1 
 median d2 obsmed2 
 median d3 obsmed3 
 median d4 obsmed4 
 
 subtract obsmed1 obsmed2 mddiff12 
 abs mddiff12 mddiff12 
 subtract obsmed1 obsmed3 mddiff13 
 abs mddiff13 mddiff13 
 subtract obsmed1 obsmed4 mddiff14 
 abs mddiff14 mddiff14 
 subtract obsmed2 obsmed3 mddiff23 
 abs mddiff23 mddiff23 
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 subtract obsmed2 obsmed4 mddiff24 
 abs mddiff24 mddiff24 
 subtract obsmed3 obsmed4 mddiff34 
 abs mddiff34 mddiff34 
 
'compute Mood statistic for observed data 
 median dat grndmed 
 count d1 >= grndmed obsm1 
 count d2 >= grndmed obsm2 
 count d3 >= grndmed obsm3 
 count d4 >= grndmed obsm4 
 subtract obsm1 obsm2 obsm12 
 abs obsm12 obsm12 
 subtract obsm1 obsm3 obsm13 
 abs obsm13 obsm13 
 subtract obsm1 obsm4 obsm14 
 abs obsm14 obsm14 
 subtract obsm2 obsm3 obsm23 
 abs obsm23 obsm23 
 subtract obsm2 obsm4 obsm24 
 abs obsm24 obsm24 
 subtract obsm3 obsm4 obsm34 
 abs obsm34 obsm34 
 
'compute p-values 
*************************************** 
'MEDUR 
 count qmddist >=  mddiff12 mdsg12q 
 divide mdsg12q nrand medur12 
 count qmddist >=  mddiff13 mdsg13q 
 divide mdsg13q nrand medur13 
 count qmddist >=  mddiff14 mdsg14q 
 divide mdsg14q nrand medur14 
 count qmddist >=  mddiff23 mdsg23q 
 divide mdsg23q nrand medur23 
 count qmddist >=  mddiff24 mdsg24q 
 divide mdsg24q nrand medur24 
 count qmddist >=  mddiff34 mdsg34q 
 divide mdsg34q nrand medur34 
'MEDR 
   count qmddistr >= mddiff12 mdsg12qr 
 divide mdsg12qr nrand medr12 
 count qmddistr >= mddiff13 mdsg13qr 
 divide mdsg13qr nrand medr13 
 count qmddistr >= mddiff14 mdsg14qr 
 divide mdsg14qr nrand medr14 
 count qmddistr >= mddiff23 mdsg23qr    
 divide mdsg23qr nrand medr23 
 count qmddistr >= mddiff24 mdsg24qr    
 divide mdsg24qr nrand medr24 

 count qmddistr >= mddiff34 mdsg34qr    
 divide mdsg34qr nrand medr34 
'MOODUR 
 count qmood >= obsm12 mood12q 
 divide mood12q nrand moodur12 
 count qmood >= obsm13 mood13q 
 divide mood13q nrand moodur13 
 count qmood >= obsm14 mood14q 
 divide mood14q nrand moodur14 
 count qmood >= obsm23 mood23q 
 divide mood23q nrand moodur23 
 count qmood >= obsm24 mood24q 
 divide mood24q nrand moodur24 
 count qmood >= obsm34 mood34q 
 divide mood34q nrand moodur34 
'MOODR 
 count qmoodr >= obsm12 mood12qr 
 divide mood12qr nrand moodr12 
 count qmoodr >= obsm13 mood13qr 
 divide mood13qr nrand moodr13 
 count qmoodr >= obsm14 mood14qr 
 divide mood14qr nrand moodr14 
 count qmoodr >= obsm23 mood23qr 
 divide mood23qr nrand moodr23  
 count qmoodr >= obsm24 mood24qr 
 divide mood24qr nrand moodr24 
 count qmoodr >= obsm34 mood34qr 
 divide mood34qr nrand moodr34 
 
*************************************** 
'print output here 
print medur12   medur13   medur14   medur23   
medur24    medur34 
print medr12     medr13     medr14     medr23     
medr24      medr34 
print moodur12 moodur13 moodur14 moodur23 
moodur24 moodur34  
print moodr12   moodr13   moodr14   moodr23   
moodr24   moodr34 
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