Multiple Comparison of Medians Using
 Permutation Tests

Scott J. Richter
University of North Carolina at Greensboro, sjricht2@uncg.edu
Melinda H. McCann
Oklahoma State University

Follow this and additional works at: http:// digitalcommons.wayne.edu/jmasm
Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons

Recommended Citation

Richter, Scott J. and McCann, Melinda H. (2007) "Multiple Comparison of Medians Using Permutation Tests," Journal of Modern Applied Statistical Methods: Vol. 6: Iss. 2, Article 6.
Available at: http://digitalcommons.wayne.edu/jmasm/vol6/iss2/6

Multiple Comparison Of Medians Using Permutation Tests

Scott J. Richter
University of North Carolina at Greensboro

Melinda H. McCann
Oklahoma State University

A robust method is proposed for simultaneous pairwise comparison using permutation tests and median differences. The new procedure provides strong control of familywise error rate and has better power properties than the median procedure of Nemenyi/Levy. It can be more powerful than the Tukey-Kramer procedure using mean differences, especially for nonnormal distributions and unequal sample sizes.

Key words: Simultaneous inference, pairwise comparisons, median difference, permutation test.

Introduction

The technique of using permutation methods for multiple comparisons has received relatively little attention in the literature. Nemenyi (1963) and later Levy (1979) proposed a procedure using medians, with the maximum of the differences of pairwise Mood statistics used to construct the reference distribution. Miller (1966, 1981), and more recently Higgins (2004), proposed a permutation version of the TukeyKramer method (Tukey, 1949; Kramer, 1956), where the range of the sample means is calculated for each permutation of observations among the k groups to obtain the reference distribution. The mean difference for each pair of means is then compared to this reference distribution to determine statistically significant differences. However, when distributions are skewed or there are outliers in the data, it may be desirable to make comparisons of medians rather than means. Thus, a logical extension of Miller's procedure is to replace means by medians. Consider the following example.

Scott J. Richter is Associate Professor and Director of the Statistical Consulting Center. His research interests are in robust methods and applied statistics. Email him at sjricht2@uncg.edu. Melinda McCann is Associate Professor of Statistics. Her research interests involve multiple comparisons procedures and their applications.

Example

Manly (1997) reported the data in Table 1 based on articles by Powell \& Russell (1984, 1985) and Linton et al (1989). The data represent dry biomass (in mg) of ants for 24 eastern horned lizards, taken in three months in 1980.

It is desired to determine which, if any, of the months have different consumptions. The relation between the means and medians for each month suggests that the distributions of biomass are skewed, and that the means may not be representative of monthly consumption. Thus, comparisons based on medians may be more appropriate.

Both the median procedure of Nemenyi and Levy and Miller's procedure permute freely across all groups (unrestricted randomization). However, this unrestricted randomization scheme has been criticized. Petrondas and Gabriel (1983) contend that Miller's approach does not control the familywise error rate (FWE): the probability of making at least one false declaration of inequality, since the test for any subset hypothesis that a pair of means is equal should be based on permuting observations only among the groups whose distributions are assumed equal under the null hypothesis. The FWE actually is controlled under the overall null hypothesis that all k distributions have the same location-that is, in the weak sense (Hochberg \& Tamhane, 1987), but not necessarily under a subset pairwise null hypothesis that requires only the two distributions being considered to have equal

Table 1. Dry biomass of ants for 24 eastern horned lizards, taken in three months in 1980.

Month	Dry biomass (mg)	Median	Mean
June	$13,242,105$	105.0	120.0
July	$8,59,20,2,245$	20.0	66.8
August	$515,488,88,233,50,600,82,40,52,1889$	160.5	403.7

location, that is, in the strong sense (Hochberg \& Tamhane, 1987). Accordingly, both Petrondas and Gabriel (1983) and Hochberg and Tamhane (1987) suggest performing each pairwise test separately using a Bonferroni adjustment. Similarly, Hochberg and Tamhane (1987) and Ryan and Ryan (1980) note that the median procedure of Nemenyi/Levy is not based on a joint testing family, and thus does not control the FWE. Hochberg and Tamhane (1987) instead suggest permuting separately within each pair (restricted randomization) and utilizing the maximum of pairwise Mood statistics to derive the reference distribution.

A new testing procedure is proposed based on the procedure of Nemenyi/Levy, using median difference statistics instead of differences between Mood statistics, and Type I error and power properties are compared to the new procedure to those of the Nemenyi/Levy procedure, pairwise tests using a Bonferroni adjustment, and also to the Tukey-Kramer procedure based on mean differences, which assumes normally distributed populations.

Methodology

Throughout, consider a one-way layout with k groups, where F_{i} is the common continuous distribution function for the $i^{\text {th }}$ group, n_{i} is the sample size of the $i^{\text {th }}$ group, and $N=n_{1}+n_{2}+\cdots+n_{k}$. Further, let μ_{i} be the location parameter associated with the $i^{\text {th }}$ distribution and $\hat{\mu}_{i}$ be the sample median for the $i^{\text {th }}$ group. Distributions are assumed identical for all treatments except for possible location differences.

Permutation-based Multiple Comparison Procedures:

Miller (1966, 1981) proposed a permutation analog to the Tukey-Kramer procedure for multiple pairwise comparison of several means. The reference distribution for Miller's method was based on the statistic, $\max _{1 \leq i<j \leq k}\left|\bar{Y}_{i}-\bar{Y}_{j}\right|$, where \bar{Y}_{i} and \bar{Y}_{j} are the respective sample means of groups i and j. The reference distribution consists of the values of this statistic for all $\frac{N!}{n_{1}!n_{2}!\cdots n_{k}!}$ possible permutations of the observed data. Each pairwise absolute difference is compared to this distribution to determine statistical significance. Bonferroni-adjusted pairwise tests suggested by Hochberg and Tamhane (1987) and Petrondas and Gabriel (1983) will also be considered.

Nemenyi (1963) and later Levy (1979) also proposed an analog to the Tukey-Kramer procedure, but based on Mood's (1950) median test, as follows. First, calculate the grand median for the pooled sample of $N=n_{1}+n_{2}+\cdots+n_{k}$ observations. Then determine M_{i}, the number of observations in the $i^{\text {th }}$ sample that exceed the grand median. The test statistic for comparing any pair is $\left|\frac{M_{i}}{n_{i}}-\frac{M_{j}}{n_{j}}\right|$. The reference distribution is based on the distribution of $\max _{1 \leq i<j \leq k}\left|\frac{M_{i}}{n_{i}}-\frac{M_{j}}{n_{j}}\right|$, the maximum value of the test statistic over all pairs, which is calculated for a large set of random reassignments of observations to groups. As with Miller's method, an observation may be
reassigned to any of the k groups to form a new permutation. Hochberg and Tamhane (1987) suggest computing a separate grand median for each pair and calculating the test statistic above. The maximum over all pairs is then found for a large set of random reassignments, where reassignments are restricted to within each pair, and these values form the reference distribution.

A New Method Using Median Differences:

In situations involving skewed distributions or outliers it may be more appropriate to consider medians instead of means. Thus, we propose multiple comparison procedures based on median differences. The method of Nemenyi/Levy, based on Mood statistics, does utilize medians, but does not incorporate the magnitude of the difference between medians. It is believed that there may be situations when incorporating this information could lead to a more sensitive procedure.

Analogous to the mean-based procedure of Miller, the reference distribution for our new procedure is based on the distribution of $\max _{1 \leq i<j \leq k}\left|\hat{\mu}_{i}-\hat{\mu}_{j}\right|$, the maximum of all pairwise median differences, calculated for a large set of random reassignments of observations to groups. Each pairwise absolute median difference is compared to this reference distribution to determine statistical significance. Both methods of permuting discussed in Section 2.1, namely restricted and unrestricted, are investigated.

Restricted Randomization Guarantees FWE Control:

The strongest argument against unrestricted permuting is that it does not necessarily provide strong control of the FWE. Restricted permuting, however, does provide strong control.

Consider k independent samples from distributions that differ by at most a location parameter. That is, for $i, j=1,2, \ldots, k$ with $i<j$, $F_{i}(x)=F_{j}\left(x-\Delta_{i j}\right)$. (Throughout Section 2.3 let $\quad i, j=1,2, \ldots, k$ with $i<j$.) The null
hypothesis then involves $\binom{k}{2}$ pairwise hypotheses of the form $H_{0 i j}: \Delta_{i j}=0$. Now consider the permutation distribution of median differences from samples i and j, and let $D_{i j}(\alpha)$ be the $1-\alpha$ percentile of this permutation distribution. Similarly, define $D_{\max }(\alpha)$ to be the $1-\alpha$ percentile of the permutation distribution for the maximum median difference among all $\binom{k}{2}$ pairs.

First consider the case under the complete null hypothesis where all $\Delta_{i j}=0$. Let the calculated median difference from samples i and j be denoted by $\tilde{D}_{i j}$. Under the complete null hypothesis the probability that a calculated median difference from a particular pair of samples in a given permutation is the maximum difference is $\binom{k}{2}^{-1}$. Thus, each pair of samples will contribute $\alpha\binom{k}{2}^{-1}$ of the values from the pairwise difference permutation distribution to the maximum difference permutation distribution.
Consequently, the probability that any observed difference from a particular pair exceeds $D_{\text {max }}(\alpha)$, the comparisonwise error rate, is $\alpha\binom{k}{2}^{-1}$. Alternatively, the familywise error rate is given by
$P($ declare at least one pair different in location \mid all pairs have equal location)

$$
\begin{aligned}
& =\sum_{\left.\left[\begin{array}{l}
i, j=1, \ldots(k) \\
2
\end{array}\right), i<j\right]} P\left(\tilde{D}_{i j} \geq D_{\max }(\alpha)\right)=\binom{k}{2}\left(\alpha /\binom{k}{2}\right) \\
& =\alpha .
\end{aligned}
$$

This shows that using the permutation distribution of the maximum difference controls
the FWE in the weak sense (Hochberg \& Tamhane, 1987).

Now consider the case where only $t<\binom{k}{2}$ of the pairwise null hypotheses are indeed true. For any permutation, a difference from one of these t pairs with a true pairwise null hypothesis is less likely to be the maximum difference than differences from the $\binom{k}{2}-t$ pairs where $\Delta_{i j} \neq 0$. Consequently, the comparisonwise error rate is $P\left(\tilde{D}_{i j} \geq D_{\max }(\alpha)\right) \leq \alpha\binom{k}{2}^{-1} . \quad$ Thus, the familywise error rate, the probability of rejecting at least one of the t true null hypotheses, is

$$
P(\text { reject at least one true null hypothesis }
$$

t true null hypotheses $) \leq t\left(\alpha /\binom{k}{2}\right)<\alpha$.
Thus, the FWE is controlled at level α for any combination of t true and $\binom{k}{2}-t$ false hypotheses, and the FWE is controlled in the strong sense (Hochberg \& Tamhane, 1987).

Alternatively, the FWE may be controlled by performing separate two-sample permutation tests and utilizing $\alpha\binom{k}{2}^{-1}$, a Bonferroni adjustment, as the significance level for each individual comparison. Based on their performance in the normal theory setting, it is expected that a Tukey-type permutation procedure will generally be less conservative than a procedure utilizing pairwise permutation tests with a Bonferroni adjustment.

Simulation Study

A simulation was conducted to evaluate five permutation procedures:

1. A modification of Miller's $(1966,1981)$ procedure, using medians instead of
means and unrestricted randomization (MEDUR);
2. A modification of (1) using restricted randomization (MEDR);
3. Separate Bonferroni-adjusted pairwise permutation tests for median differences (MEDBON);
4. The procedure of Nemenyi (1963)/Levy (1979) based on differences between Mood statistics and unrestricted randomization (MOODUR);
5. A modification of (4), using restricted randomization (MOODR).

The following model was assumed to generate the data:

$$
y_{i j}=\mu_{i}+e_{i j}
$$

where $y_{i j}=$ the $j^{\text {th }}$ observation for the $i^{\text {th }}$ treatment $\mu_{i}=$ the location parameter for the $i^{\text {th }}$ treatment $e_{i j}=$ the random error associated with the $j^{\text {th }}$ observation for the $i^{\text {th }}$ treatment. The $e_{i j}$ are assumed independent and identically distributed.

Several different error distributions were examined:

- $\operatorname{Normal}\left(\mu=0, \sigma^{2}=1\right)$;
- Uniform [-3,3];
- Exponential $(\lambda=3)$;
- Double exponential $(\operatorname{Exp}(\lambda=3)-E$ $\operatorname{xp}(\lambda=3)) ;$
- Location-contaminated normal $(N(0,1)$ with 10% contamination from $N(9,1)$).

These choices encompass two symmetric, nonnormal distributions: the uniform (lightertailed than normal) and the double exponential (heavier-tailed than normal); and two skewed distributions: the exponential and contaminated normal. Models contained either three or five groups, and both equal and unequal sample sizes were examined. In most cases the total number of permutations possible is prohibitive, and thus a random sample of permutations was used to estimate the p-value for any given test. KellerMcNulty and Higgins (1987) examined the issue
of randomly sampling the permutations, and concluded that little is to be gained by taking more than 1600 randomly sampled permutations. Thus, each permutation test was based on a reference distribution estimated via a slightly conservative 2000 randomly sampled permutations, and the estimated proportions of rejections were based on 2000 randomly generated samples. The simulations were implemented using Resampling Stats version 5.0 (Resampling Stats Inc., 2000).

The familywise error rate (FWE) and any-pair power (Shaffer, 1995), the probability of detecting at least one true difference, are reported in the Tables 2-12. For the Tukey-type procedures based on medians, in cases where either all groups have identical locations or all groups had different locations, these were estimated by comparing the maximum pairwise difference from among the samples to the respective reference distribution, and counting the number of random samples where this maximum was in the top 5% of the reference distribution. In cases where some pairs had identical locations while others pairs differed in location, the FWE was estimated as the proportion of permutations where at least one of the true null hypotheses was rejected (strong FWE).

Results

Comparison of Median-based Procedures

 Type I ErrorAll median-based procedures controlled the FWE in the strong sense (See Tables 2-4). In fact, in the cases where some pairs had equal locations and some did not, the probability of at least one false rejection was usually lower than the case where all locations were equal. As Petrondas and Gabriel (1983) admitted, their counterexample was very small, and, "for realistic, larger examples the corresponding tests (using unrestricted permuting) may be both valid and useful." It is also worth noting, however, that even though the unrestricted permuting method did not exhibit inflated FWE rates for either the median difference statistic or the Mood statistic, in cases where there was a difference between unrestricted and restricted FWE rates, the unrestricted FWE was almost
always higher. This was true especially with unequal sample sizes, where error rates more than twice as large for unrestricted permuting were not uncommon. As we shall see in the next section, however, higher FWE rates did not typically lead to more powerful tests. In light of this evidence and the earlier cited criticisms of unrestricted randomization, as well as the fact that power is generally at least as good under restricted randomization, only procedures using restricted randomization will be considered in the remainder of the discussion.

Power

Consider first the case of equal sample sizes. With small group sample size ($n=5$) and small location differences ($\Delta_{1}=\Delta_{2}=0, \Delta_{3}=2$ or $\Delta_{1}=\Delta_{2}=2, \Delta_{3}=\Delta_{4}=\Delta_{5}=0$), MEDR always had the highest power among the median procedures (See Tables 5 and 7). When there were larger location differences ($\Delta_{1}=\Delta_{2}=2, \Delta_{3}=5$ or $\Delta_{1}=\Delta_{2}=2, \Delta_{3}$ $=3, \Delta_{4}=\Delta_{5}=0$),MOODR often had highest power for normal and contaminated normal data (e.g., see Table 6). On the other hand, MEDBON had no power with $n=5$ (See Tables 5-7). With group sample size $n=10$ (e.g., see Table 8), MEDR was often most powerful for heavier-tailed distributions (exponential, double exponential), especially with larger location differences and more groups (e.g., 3 groups, $n=10, \Delta_{1}=\Delta_{2}=2, \Delta_{3}=5 ; 5$ groups, $n=10, \Delta_{1}=\Delta_{2}=2, \Delta_{3}=\Delta_{4}=\Delta_{5}=0$) while MOODR was most powerful for the latter five group scenarios for contaminated normal data. MEDBON often had higher power than MOODR, but always trailed MEDR. For $n=20$, MEDBON was most powerful for uniform and exponential data, and all three median-based procedures had similar power for the other distributions (See Table 9). MEDR performed most consistently across different scenarios, was never much less powerful than any other procedure for nonnormal data, and was often substantially more powerful. For example, in Table 11, MEDR had power almost 200 times the power of MOODR (0.591 versus 0.003), while the largest power advantage for

Table 2. FWE - Proportion of times at least one true null hypothesis was rejected at $\alpha=0.05$, three groups, $n_{i}=5$, locations $\Delta_{1}=\Delta_{2}=\Delta_{3}=0$.

	Normal	Uniform	Distribution Double-Exp.	Exponential	Cont.-Normal
Procedure					
MEDR	0.053	0.046	0.047	0.037	0.027
MEDUR	0.035	0.041	0.054	0.040	0.019
MOODR	0.013	0.018	0.017	0.019	0.007
MOODUR	0.009	0.013	0.011	0.013	0.003
TUKEY	0.053	0.059	0.060	0.044	0.026

Table 3. FWE - Proportion of times at least one true null hypothesis was rejected at $\alpha=0.05$, five groups, $n_{i}=5$, locations $\Delta_{1}=\Delta_{2}=2 ; \Delta_{3}=\Delta_{4}=\Delta_{5}=0$.

	Normal	Uniform	Distribution Double-Exp.	Exponential	Cont.-Normal
Procedure					
MEDR	0.000	0.009	0.009	0.014	0.000
MEDUR	0.000	0.023	0.017	0.021	0.001
MOODR	0.001	0.008	0.005	0.003	0.001
MOODUR	0.001	0.008	0.005	0.003	0.001
TUKEY	0.024	0.025	0.025	0.023	0.025

Table 4. FWE - Proportion of times at least one true null hypothesis was rejected at $\alpha=0.05$, five groups, $n_{1}=3, n_{2}=4, n_{3}=5, n_{4}=6, n_{5}=7$, locations $\Delta_{1}=\Delta_{2}=2 ; \Delta_{3}=\Delta_{4}=\Delta_{5}=0$.

	Normal	Uniform	Distribution Double-Exp.	Exponential	Cont.-Normal
Procedure					
MEDR	0.001	0.005	0.008	0.006	0.003
MEDUR	0.003	0.013	0.025	0.014	0.026
MOODR	0.001	0.005	0.007	0.001	0.002
MOODUR	0.001	0.005	0.007	0.001	0.002
TUKEY	0.000	0.000	0.000	0.001	0.001

Table 5. Power - Proportion of times at least one pairwise difference detected at $\alpha=0.05$, three groups, $n_{i}=5$, locations $\Delta_{1}=\Delta_{2}=0, \Delta_{3}=2$.

	Normal	Uniform	Distribution Double-Exp.	Exponential	Cont.-Normal
Procedure	0.579	0.269	0.098	0.151	0.336
MEDR	0.487	0.256	0.095	0.113	0.297
MEDUR	0.000	0.000	0.000	0.000	0.000
MEDBON	0.238	0.064	0.049	0.080	0.133
MOODR	0.131	0.045	0.039	0.055	0.070
MOODUR	0.818	0.342	0.125	0.186	0.478
TUKEY					

Table 6. Power - Proportion of times at least one pairwise difference detected at $\alpha=0.05$, three groups, $n_{i}=5$, locations $\Delta_{1}=0, \Delta_{2}=2, \Delta_{3}=5$.

	Normal	Uniform	Distribution D-Exp	Exponential	Cont-Normal
Procedure					
MEDR	0.786	0.707	0.262	0.410	0.455
MEDUR	0.976	0.716	0.220	0.422	0.581
MEDBON	0.000	0.000	0.000	0.000	0.000
MOODR	0.888	0.469	0.156	0.302	0.537
MOODUR	0.820	0.377	0.127	0.248	0.499
TUKEY	1.000	0.979	0.350	0.620	0.590

Table 7. Power - Proportion of times at least one pairwise difference detected at $\alpha=0.05$, five groups, $n_{i}=5$, locations $\Delta_{1}=\Delta_{2}=2 ; \Delta_{3}=\Delta_{4}=\Delta_{5}=0$.

Distribution
Normal Uniform Double-Exp. Exponential Cont.-Normal

Procedure					
MEDR	0.637	0.369	0.059	0.137	0.396
MEDUR	0.400	0.293	0.078	0.104	0.245
MEDBON	0.000	0.000	0.000	0.000	0.000
MOODR	0.477	0.112	0.096	0.135	0.303
MOODUR	0.477	0.112	0.096	0.135	0.303
TUKEY	0.886	0.422	0.000	0.186	0.540

Table 8. Power - Proportion of times at least one pairwise difference detected at $\alpha=0.05$, three groups, $n_{i}=10$, locations $\Delta_{1}=0, \Delta_{2}=2, \Delta_{3}=5$.

	Normal	Uniform	Distribution Double-Exp.	Exponential	Cont.-Normal
Procedure					
MEDR	1.000	0.996	0.661	0.949	0.923
MEDUR	1.000	0.990	0.635	0.904	0.911
MEDBON	1.000	1.000	0.574	0.947	0.854
MOODR	0.888	0.469	0.156	0.302	0.537
MOODUR	0.820	0.377	0.127	0.248	0.499
TUKEY	1.000	1.000	0.627	0.890	0.940

Table 9. Power - Proportion of times at least one pairwise difference detected at $\alpha=0.05$, three groups, $n_{i}=20$, locations $\Delta_{1}=\Delta_{2}=0, \Delta_{3}=2$.

	Normal	Uniform	Distribution Double-Exp.	Exponential	Cont-Normal
Procedure					
MEDR	1.000	0.664	0.374	0.664	0.991
MEDUR	1.000	0.676	0.361	0.676	0.979
MEDBON	1.000	0.776	0.342	0.776	0.983
MOODR	0.998	0.569	0.384	0.648	0.996
MOODUR	0.997	0.529	0.352	0.614	0.992
TUKEY	1.000	0.550	0.278	0.550	0.436

Table 10. Power - Proportion of times at least one pairwise difference detected at $\alpha=0.05$, three groups, $n_{1}=4, n_{2}=5, n_{3}=6$, locations $\Delta_{1}=\Delta_{3}=0, \Delta_{2}=2$.

	Normal	Uniform	Distribution Double-Exp.	Exponential	Cont.-Normal
Procedure					
MEDR	0.607	0.260	0.090	0.129	0.287
MEDUR	0.558	0.262	0.093	0.121	0.264
MEDBON	0.332	0.108	0.047	0.100	0.203
MOODR	0.147	0.041	0.060	0.070	0.125
MOODUR	0.147	0.041	0.060	0.070	0.125
TUKEY	0.220	0.035	0.005	0.012	0.051

Table 11. Power - Proportion of times at least one pairwise difference detected at $\alpha=0.05$, three groups, $n_{1}=4, n_{2}=5, n_{3}=6$, normally distributed data.

Location pattern

	Location pattern $\Delta_{1}=\Delta_{3}=0, \Delta_{2}=2$		
Procedure	$\Delta_{1}=2, \Delta_{2}=\Delta_{3}=0$	$\Delta_{1}=\Delta_{2}=0, \Delta_{3}=2$	
MEDR	0.591	0.607	0.711
MEDUR	0.656	0.558	0.478
MEDBON	0.302	0.332	0.458
MOODR	0.003	0.147	0.654
MOODUR	0.003	0.147	0.654
TUKEY	0.219	0.220	0.228

Table 12. Power - Proportion of times at least one difference detected at $\alpha=0.05$, five groups, $n_{1}=3, n_{2}=4, n_{3}=5, n_{4}=6, n_{5}=7$, normally distributed data.

Location pattern

$$
\begin{array}{llll}
\Delta_{1}=\Delta_{2}=2 ; & \Delta_{1}=0 ; \Delta_{2}=\Delta_{3}=2 ; & \Delta_{1}=\Delta_{2}=0 ; & \Delta_{1}=\Delta_{2}=\Delta_{3}=0 ; \\
\Delta_{3}=\Delta_{4}=\Delta_{5}=0 & \Delta_{4}=\Delta_{5}=0 & \Delta_{3}=\Delta_{4}=2 ; \Delta_{5}=0 & \Delta_{4}=\Delta_{5}=2
\end{array}
$$

Procedure				
MEDR	0.546	0.451	0.556	0.702
MEDUR	0.516	0.372	0.322	0.298
MEDBON	0.003	0.000	0.041	0.002
MOODR	0.001	0.001	0.416	0.832
MOODUR	0.001	0.001	0.430	0.831
TUKEY	0.000	0.032	0.025	0.024

MOODR was less than 1.2 times that of MEDR, 0.537 versus 0.455 See Table 6). Table 8 shows, however, that when the sample size increased from $n=5$ to $n=10$, MOODR no longer had a power advantage over MEDR (in fact had substantially less power) for the same location pattern as in Table 6.

When sample sizes were unequal and group locations were different, the power of all tests depended on the pattern of location parameters. MOODR was by far the most affected by the pattern of differences, with virtually no power in the most extreme case (smallest samples with nonzero location parameters and largest with zero location
parameters), while sometimes having the highest power with the situation reversed. In contrast, MEDR maintained respectable power for all location patterns (See Tables 11 and 12). MEDBON displayed low power when sample sizes were small, especially with five groups (10 comparisons). Power was higher with larger sample sizes, but still generally trailed the other two procedures. Many other scenarios were examined. These results are available at www.uncg.edu/~sjricht2/Research.html.

Table 13. P-values for pairwise comparisons.

Comparison	Median difference	MEDR	MOODR	MEDUR	MOODUR	TUKEY
1vs2	85.0	0.950	1.000	0.794	0.974	0.985
1vs3	55.5	0.996	0.566	0.834	0.534	0.605
2vs3	140.5	0.691	0.295	0.645	0.345	0.372

Table 14. Average times to complete an interview for four interviewers.

Interviewer	Average time (min.)	Median	Mean
1	$10.0,25.0,40.1,29.2,4.1$	25.0	21.6
2	$15.0,5.2,55.3,15.1,23.2$	15.1	22.8
3	$19.1,25.4,8.3$	19.1	17.6
4	$5.1,9.2,14.1$	9.2	9.5

Table 15. P-values for pairwise comparisons.

Comparison	Median difference	MEDR	MOODR	MEDUR	MOODUR	TUKEY
1vs2	9.9	0.851	1.000	0.920	1.000	0.999
1vs3	5.9	1.000	1.000	0.978	0.915	0.980
1vs4	15.8	0.211	0.450	0.525	0.362	0.666
2vs3	4.0	1.000	1.000	1.000	0.915	0.961
2vs4	5.9	1.000	0.450	0.978	0.362	0.607
3vs4	9.9	0.851	0.824	0.920	0.915	0.900

Power Advantages of Median-based Procedures
The power of the median-based procedures was compared to that of the TukeyKramer procedure using means. For normally distributed data and equal sample sizes, TUKEY always had higher power than the median-based procedures (See Tables 4-6). However, with unequal sample sizes, the median based procedures often had higher power even for normally distributed data (See Tables 10, 11 and 12). This may not be surprising, since the Tukey-Kramer procedure has been shown to be conservative for unequal sample sizes (Hayter, 1984). For nonnormally distributed data, the median-based procedures often had higher power, especially with larger sample sizes.

Conclusion
The maximum median difference test (MEDR) is recommended as a robust pairwise comparison procedure when strong control of FWE is desired. The maximum Mood difference test (MOODR) is not recommended, due to poor power properties, especially for unequal sample sizes. Likewise, the procedure of using separate median difference tests with a Bonferroni adjustment (MEDBON) generally had less power and no power in some cases with small sample sizes. Tukey's HSD (TUKEY) is preferred when groups have small and equal samples sizes ($n=5$), even for nonnormal data, and also with normal data, regardless of the sample size. In all other cases, the maximum median difference test (MEDR) is preferred. With nonnormal data and large ($n \geq 20$) equal
sample sizes, and in all cases with unequal sample sizes, MEDR had higher power than TUKEY. MEDR never performed poorly with regard to power, and was often much more powerful than the other median-based procedures considered.

Example 1
The first example is based on the data in the Introduction (See Table 1.) Table 13 gives p values for the three pairwise comparisons, for the MEDR, MEDUR, MOODR, MOODUR and TUKEY procedures. Notice that the Mood tests yield the most evidence for a difference between months two and three. This is an example of a scenario studied in the simulations, namely small samples with differences between all pairs, with larger differences associated with the larger samples, a case where the Mood tests often had the highest power.

Example 2:
Consider data reported by Gibbons (1985, p. 202) in Table 14. The data represent average times spent to complete an interview for four interviewers.

It is desired to test if there is evidence that certain interviewers tend to have longer interview times. Table 15 gives p-values for the six pairwise comparisons. Here MEDR provides the strongest evidence of location difference between the pair with the largest observed difference, interviewers 1 and 4. Resampling Stats code for calculating the permutation p values in this example is provided in the Appendix.

References

Gibbons, J. D. (1985). Nonparametric Methods for Quantitative Analysis, $2^{\text {nd }}$ edition. Columbus, OH: American Sciences Press, Inc.

Hayter, A. J. (1984). A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. Annals of Statistics, 12, 61-75.

Higgins, J. J. (2004). Introduction to Modern Nonparametric Statistics. Pacific Grove, CA: Brooks/Cole.

Hochberg Y. \& Tamhane, A. C. (1987). Multiple Comparison Procedures. New York: John Wiley and Sons.

Keller-McNulty, S. \& Higgins, J. J. (1987). Effect of tail weight and outliers on power and type-I error of robust permutation tests for location. Communications in Statistics: Simulation and Computation, 16(1):17-36.

Kramer, C. Y. (1956). Extension of multiple range tests to group means with unequal numbers of replications. Biometrics, 12, 309-310.

Levy (1979). Pairwise Comparisons associated with the k independent sample median test. The American Statistician, 33(3), 138-139.

Linton, L. R., Edgington, E. S. \& Davies, R. W. (1989). A view of niche overlap amenable to statistical analysis. Canadian Journal of Zoology, 67, 55-60.

Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology, ($2^{\text {nd }}$ ed.). London: Chapman \& Hall.

Miller, R. G. (1966). Simultaneous statistical inference. New York: McGraw-Hill.

Miller, R. G. (1981). Simultaneous statistical inference. ($2^{\text {nd }}$ ed.). New York: Springer-Verlag.

Mood, A. M. (1950). Introduction to the Theory of Statistics. New York: McGraw-Hill.

Nemenyi, P. (1963). Distribution-free multiple comparisons. Unpublished doctoral dissertation, Princeton University, Princeton, NJ.

Petrondas, D. A. \& Gabriel, K. R. (1983). Multiple comparisons by rerandomization tests. Journal of the American Statistical Association, 78, 949-957.

Powell, G. L. \& Russell, A. P. (1984). The diet of the eastern short-horned lizard (Phrynosoma douglassi breviroste) in Alberta and its relationship to sexual size dimorphism. Canadian Journal of Zoology, 62, 428-440.

Powell, G. L. \& Russell, A. P. (1985). Growth and sexual size dimorphism in Alberta populations of the eastern short-horned lizard, Phrynosoma douglassi breviroste. Canadian Journal of Zoology, 63, 139-154.

Resampling Stats (2000). Resampling Stats Inc., Arlington, Virginia.

Ryan, T. A. \& Ryan, T. A., Jr. (1980). K Independent sample median test. A letter to the Editor, The American Statistician, 34, 123.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561-584.

Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99-114.

Appendix
Below is Resampling Stats ${ }^{\circledR}$ code to calculate the permutation p-values in Example 2. The program can be modified to handle different numbers of groups.

	'set maximum vector size maxsize default 500000 seed 1234
	$\begin{array}{\|l} \text { 'create data vectors } \\ \text { data }(102540.129 .24 .1) \mathrm{d} 1 \\ \text { data }(155.255 .315 .123 .2) \mathrm{d} 2 \\ \text { data }(19.125 .48 .3) \mathrm{d} 3 \\ \text { data }(5.19 .214 .1) \mathrm{d} 4 \end{array}$
	'combine data vectors for unrestricted randomization concat d1 d2 d3 d4 dat
	'create pairwise data vectors for restricted randomization concat d1 d2 dat12 concat d1 d3 dat 13 concat d1 d4 dat14 concat d2 d3 dat23 concat d2 d4 dat24 concat d3 d4 dat34
	'obtain permutation distribution let nrand=2000 repeat nrand
	'unrestricted randomization shuffle dat sdat take sdat 1,5 sdat 1 take sdat 6,10 sdat2 take sdat 11,13 sdat 3 take sdat 14,16 sdat 4

'restricted randomization shuffle dat 12 sdat 12 take sdat12 1,5 sdat121
take sdat12 6,10 sdat122
shuffle dat 13 sdat 13
take sdat13 1,5 sdat 131
take sdat13 6,8 sdat133
shuffle dat 14 sdat 14
take sdat14 1,5 sdat 141
take sdat 146,8 sdat 144
shuffle dat 23 sdat 23
take sdat23 1,5 sdat 232
take sdat23 6,8 sdat 233
shuffle dat24 sdat24
take sdat24 1,5 sdat 242
take sdat24 6,8 sdat244
shuffle dat 34 sdat34
take sdat 341,3 sdat 343
take sdat 344,6 sdat 344
'compute medians of shuffled data
median sdat 1 med 1
median sdat2 med2
median sdat3 med3
median sdat4 med4
median sdat121 med121
median sdat122 med 122
median sdat131 med131
median sdat133 med133
median sdat141 med141
median sdat144 med144
median sdat 232 med232
median sdat 233 med233
median sdat 242 med 242
median sdat244 med244
median sdat 343 med343
median sdat344 med344
'compute median differences of shuffled data, unrestricted randomization
subtract med1 med2 med12
subtract med1 med3 med13
subtract med1 med4 med14
subtract med 2 med 3 med 23
subtract med2 med4 med24
subtract med3 med4 med34
'create one vector, take absolute values
concat med12 med13 med14 med23
med24 med34

	med
	'compute median differences of shuffled data, restricted randomization subtract med 121 med 122 med12r subtract med 131 med 133 med 13 r subtract med141 med 144 med14r subtract med 232 med 233 med 23 r subtract med 242 med 244 med 24 r subtract med 343 med 344 med34r
	'create one vector, take absolute value concat med $12 r$ med $13 r$ med $23 r$ medvecr abs medvecr medvecr
	'compute maximum absolute difference max medvec qmedsim max medvecr qmedsimr
	```'compute Mood statistics, unrestricted randomization median sdat grndmed count sdat \(1>=\) grndmed m 1 count sdat \(2>=\) grndmed m 2 count sdat \(3>=\) grndmed m3 count sdat \(4>=\) grndmed m 4 median sdat12 gm12 count sdat \(1>=\) gm12 m121 count sdat2 \(>=\mathrm{gm} 12 \mathrm{~m} 122\) median sdat 13 gm 13 count sdat \(1>=\) gm13 m131 count sdat3 \(>=\mathrm{gm} 13 \mathrm{~m} 133\) median sdat 14 gm 14 count sdat \(1>=\) gm14 m141 count sdat \(4>=\) gm14 m144 median sdat23 gm23 count sdat2 \(>=\) gm23 m232 count sdat3 \(>=\) gm 23 m 233 median sdat24 gm24 count sdat2 \(>=\) gm2 24242 count sdat \(4>=\) gm 24 m 244 median sdat34 gm34 count sdat \(3>=\) gm3 3 m343 count sdat \(4>=\) gm34 m344 subtract m 1 m 2 m 12 subtract m 1 m 3 m 13 subtract ml m 4 m 14 subtract m 2 m 3 m 23 subtract m 2 m 4 m 24 subtract m 3 m 4 m 34```

medvec abs medvec medvec
'compute median differences of shuffled data, restricted randomization
subtract med 121 med 122 med 12 r
subtract med131 med 133 med13r
subtract med 141 med 144 med14r
subtract med 232 med 233 med23r
subtract med242 med244 med24r
subtract med343 med344 med34r
'create one vector, take absolute value concat med $12 r$ med $13 r$ med $23 r$ medvecr abs medvecr medvecr
'compute maximum absolute difference
max medvec qmedsim
max medvecr qmedsimr
'compute Mood statistics, unrestricted randomization
median sdat grndmed
count sdat $1>=$ grndmed m 1
count sdat $2>=$ grndmed m2
count sdat3 $>=$ grndmed m3
count sdat $4>=$ grndmed m 4
count sdat $1>=\mathrm{gm} 12 \mathrm{~m} 121$
count sdat $2>=\mathrm{gm} 12 \mathrm{~m} 122$
median sdat13 gm13
count sdat $1>=$ gm13 m131
count sdat $3>=\mathrm{gml} 3 \mathrm{~m} 133$
median sdat14 gm14
count sdat $1>=$ gm14 m141
count sdat $4>=$ gm14 m144
median sdat23 gm23
count sdat2 $>=$ gm23 m232
count sdat $3>=\mathrm{gm} 23 \mathrm{~m} 233$
median sdat24 gm24
count sdat2 $>=$ gm24 m242
count sdat $4>=$ gm24 m244
median sdat34 gm34
count sdat3 $>=$ gm34 m343
count sdat $4>=$ gm34 m344
subtract ml m 2 m 12
subtract ml m 3 ml 3
subtract m 1 m 4 m 14
subtract m 2 m 3 m 23
subtract m3 m 4 m 34
'Mood statistics are m12-m34
'create one vector, take absolute values
concat m12 m13 m14 m23 m24 m34
mood
abs mood mood
'compute maximum absolute difference max mood maxmood
'Compute Mood statistics, restricted randomization
subtract m121 m122 m12r subtract m 131 m 133 m 13 r subtract m141 m144 m14r subtract m232 m233 m23r subtract m 242 m 244 m 24 r subtract m343 m344 m34r
'Mood statistics are m12r-m34r
'create one vector, take absolute values concat m 12 r m 13 r m 14 r m 23 r m 24 r
m34r
moodr abs moodr moodr
'compute maximum absolute difference max moodr maxmoodr
'save statistic values for reference distributions score qmedsim qmddist score qmedsimr qmddistr score maxmood qmood score maxmoodr qmoodr end
'compute medians and differences of observed data
median d1 obsmed1
median d2 obsmed2
median d3 obsmed3
median d4 obsmed4
subtract obsmed1 obsmed2 mddiff12 abs mddiff12 mddiff12
subtract obsmed1 obsmed3 mddiff13 abs mddiff13 mddiff13
subtract obsmed1 obsmed4 mddiff14 abs mddiff14 mddiff14
subtract obsmed2 obsmed3 mddiff23 abs mddiff23 mddiff23

	subtract obsmed2 obsmed4 mddiff abs mddiff24 mddiff24 subtract obsmed3 obsmed4 mddif abs mddiff34 mddiff34   'compute Mood statistic for observed data median dat grndmed count d1 >= grndmed obsm1 count d2 $>=$ grndmed obsm2 count d3 $>=$ grndmed obsm3 count d4 >= grndmed obsm4 subtract obsm1 obsm2 obsm12 abs obsm12 obsm12 subtract obsm1 obsm3 obsm13 abs obsm13 obsm13 subtract obsm1 obsm4 obsm14 abs obsm14 obsm14 subtract obsm2 obsm3 obsm23 abs obsm23 obsm 23 subtract obsm2 obsm4 obsm24 abs obsm24 obsm24 subtract obsm3 obsm4 obsm34 abs obsm34 obsm34
	*****
	'MEDUR   count qmddist >= mddiff12 mdsg12q divide mdsg 12 q nrand medur 12 count qmddist $>=$ mddiff13 mdsg13q divide mdsg13q nrand medurl3 count qmddist $>=$ mddiff14 mdsg14q divide mdsg 14 q nrand medur 14 count qmddist >= mddiff23 mdsg23q divide mdsg23q nrand medur23 count qmddist $>=$ mddiff2 2 mdsg 24 q divide mdsg 24 q nrand medur24 count qmddist $>=$ mddiff3 4 mdsg 34 q divide mdsg34q nrand medur34
	'MEDR   count qmddistr $>=$ mddiff12 mdsg 12 qr divide mdsg12qr nrand medr 12 count qmddistr $>=$ mddiff13 mdsg13qr divide mdsg13qr nrand medr 13 count qmddistr $>=$ mddiff14 mdsg 14 qr divide mdsg14qr nrand medr 14 count qmddistr $>=$ mddiff23 mdsg23qr divide mdsg23qr nrand medr23 count qmddistr $>=$ mddiff2 2 mdsg 24 qr divide mdsg24qr nrand medr24

abs mddiff24 mddiff24
subtract obsmed3 obsmed4 mddiff34
abs mddiff34 mddiff34
median dat grndmed
count d1 $>=$ grndmed obsm1
count d2 $>=$ grndmed obsm2
count d3 $>=$ grndmed obsm3
count d4 >= grndmed obsm4
subtract obsm1 obsm2 obsm12
abs obsm12 obsm12
subtract obsm1 obsm3 obsm13
abs obsm13 obsm13
subtract obsm1 obsm4 obsm14
abs obsm14 obsm14
subtract obsm2 obsm3 obsm23
abs obsm23 obsm23
subtract obsm2 obsm4 obsm24
abs obsm24 obsm24
subtract obsm3 obsm4 obsm34
abs obsm34 obsm34
'compute p-values
***************************************
count qmddist $>=$ mddiff12 mdsg12q divide mdsg 12 q nrand medur 12 count qmddist >= mddiff13 mdsg13q divide mdsg 13 q nrand medur 13 count qmddist >= mddiff14 mdsg14q divide mdsg 14 q nrand medur 14 count qmddist $>=$ mddiff23 mdsg23q divide mdsg23q nrand medur23 count qmddist $>=$ mddiff2 4 mdsg 24 q divide mdsg24q nrand medur24 count qmddist $>=$ mddiff3 4 mdsg 34 q divide mdsg34q nrand medur34
count qmddistr >= mddiff12 mdsg12qr divide mdsg12qr nrand medr12 count qmddistr $>=$ mddiff13 mdsg13qr divide mdsg13qr nrand medr13 divide mdsg 14 qr nrand medr 14 count qmddistr >= mddiff23 mdsg23qr divide mdsg23qr nrand medr23 divide mdsg24qr nrand medr24

```
 count qmddistr >= mddiff34 mdsg34qr
 divide mdsg34qr nrand medr34
'MOODUR
 count qmood \(>=\) obsm12 mood12q
 divide mood 12 q nrand moodur 12
 count qmood \(>=\) obsm13 mood13q
 divide mood13q nrand moodur 13
 count qmood \(>=\) obsm14 mood14q
 divide mood 14 q nrand moodur 14
 count qmood \(>=\) obsm23 mood 23 q
 divide mood \(23 q\) nrand moodur 23
 count qmood \(>=\) obsm 24 mood \(24 q\)
 divide mood 24 q nrand moodur24
 count qmood \(>=\) obsm34 mood34q
 divide mood \(34 q\) nrand moodur34
'MOODR
 count qmoodr >= obsm12 mood12qr
 divide mood 12 qr nrand moodr 12
 count qmoodr \(>=\) obsm13 mood13qr
 divide mood 13qr nrand moodr 13
 count qmoodr \(>=\) obsm14 mood14qr
 divide mood 14qr nrand moodr 14
 count qmoodr \(>=\) obsm 23 mood 23 qr
 divide mood \(23 q\) r nrand moodr23
 count qmoodr >= obsm24 mood 24 qr
 divide mood24qr nrand moodr24
 count qmoodr >= obsm34 mood34qr
 divide mood34qr nrand moodr34
'print output here
print medur12 medur13 medur14 medur23
medur24 medur34
print medr12 medr13 medr14 medr23
medr24 medr34
print moodur 12 moodur13 moodur 14 moodur23
moodur24 moodur34
print moodr12 moodr13 moodr14 moodr23
moodr24 moodr34
```

