6,287 research outputs found

    The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

    Get PDF
    This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented

    Seyfert's Sextet: A Slowly Dissolving Stephan's Quintet?

    Get PDF
    We present a multiwavelength study of the highly evolved compact galaxy group known as Seyfert's Sextet (HCG79: SS). We interpret SS as a 2-3 Gyr more evolved analog of Stephan's Quintet (HCG92: SQ). We postulate that SS formed by sequential acquisition of 4-5 primarily late-type field galaxies. Four of the five galaxies show an early-type morphology which is likely the result of secular evolution driven by gas stripping. Stellar stripping has produced a massive/luminous halo and embedded galaxies that are overluminous for their size. These are interpreted as remnant bulges of the accreted spirals. H79d could be interpreted as the most recent intruder being the only galaxy with an intact ISM and uncertain evidence for tidal perturbation. In addition to stripping activity we find evidence for past accretion events. H79b (NGC6027) shows a strong counter-rotating emission line component interpreted as an accreted dwarf spiral. H79a shows evidence for an infalling component of gas representing feedback or possible cross fueling by H79d. The biggest challenge to this scenario involves the low gas fraction in the group. If SS formed from normal field spirals then much of the gas is missing. Finally, despite its advanced stage of evolution, we find no evidence for major mergers and infer that SS (and SQ) are telling us that such groups coalesce via slow dissolution.Comment: 70 pages, 19 figures, 15 tables - accepted for publication in the Astronomical Journa

    Solar Coronal Structures and Stray Light in TRACE

    Full text link
    Using the 2004 Venus transit of the Sun to constrain a semi-empirical point-spread function for the TRACE EUV solar telescope, we have measured the effect of stray light in that telescope. We find that 43% of 171A EUV light that enters TRACE is scattered, either through diffraction off the entrance filter grid or through other nonspecular effects. We carry this result forward, via known-PSF deconvolution of TRACE images, to identify its effect on analysis of TRACE data. Known-PSF deconvolution by this derived PSF greatly reduces the effect of visible haze in the TRACE 171A images, enhances bright features, and reveals that the smooth background component of the corona is considerably less bright (and hence much more rarefied) than commonly supposed. Deconvolution reveals that some prior conlclusions about the Sun appear to have been based on stray light in the images. In particular, the diffuse background "quiet corona" becomes consistent with hydrostatic support of the coronal plasma; feature contrast is greatly increased, possibly affecting derived parameters such as the form of the coronal heating function; and essentially all existing differential emission measure studies of small features appear to be affected by contamination from nearby features. We speculate on further implications of stray light for interpretation of EUV images from TRACE and similar instruments, and advocate deconvolution as a standard tool for image analysis with future instruments such as SDO/AIA.Comment: Accepted by APJ; v2 reformatted to single-column format for online readabilit

    Rotation reduces convective mixing in Jupiter and other gas giants

    Full text link
    Recent measurements of Jupiter's gravitational moments by the Juno spacecraft and seismology of Saturn's rings suggest that the primordial composition gradients in the deep interior of these planets have persisted since their formation. One possible explanation is the presence of a double-diffusive staircase below the planet's outer convection zone, which inhibits mixing across the deeper layers. However, hydrodynamic simulations have shown that these staircases are not long-lasting and can be disrupted by overshooting convection. In this paper we suggests that planetary rotation could be another factor for the longevity of primordial composition gradients. Using rotational mixing-length theory and 3D hydrodynamic simulations, we demonstrate that rotation significantly reduces both the convective velocity and the mixing of primordial composition gradients. In particular, for Jovian conditions at t108 yrst\sim10^{8}~\mathrm{yrs} after formation, rotation reduces the convective velocity by a factor of 6, and in turn, the kinetic energy flux available for mixing gets reduced by a factor of 632006^3\sim 200. This leads to an entrainment timescale that is more than two orders of magnitude longer than without rotation. We encourage future hydrodynamic models of Jupiter and other gas giants to include rapid rotation, because the decrease in the mixing efficiency could explain why Jupiter and Saturn are not fully mixed.Comment: Accepted for publication in the Astrophysical Journal Letter

    New Spectroscopy of U Gem

    Full text link
    We present new optical spectroscopic observations of U Geminorum obtained during a quiescent stage. We performed a radial velocity analysis of three Balmer emission lines yielding inconsistent results. Assuming that the radial velocity semi amplitude accurately reflects the motion of the white dwarf, we arrive at masses for the primary which are in the range of M_wd= 1.21 - 1.37 M_Sun. Based on the internal radial velocity inconsistencies and results produced from the Doppler tomography -- wherein we do not detect emission from the hot spot, but rather an intense asymmetric emission overlaying the disc, reminiscent of spiral arms -- we discuss the possibility that the overestimation of the masses may be due to variations of gas opacities and a partial truncation of the disc.Comment: 16 pages, 10 figures, 3 tables, to be published on RevMexAA. arXiv admin note: text overlap with arXiv:2112.0343

    The Influence of Algal Exudate on the Hygroscopicity of Sea Spray Particles

    Get PDF
    We examined the effect of organic matter released by four different algal species on the hygroscopic growth and droplet activation behaviour of laboratory-generated marine aerosol particles. Hygroscopic growth factors and dry diameters for activation were reduced by less than 10%, compared to that of sodium chloride or of artificial seawater that was devoid of marine surfactants. Concentration-dependent nonideal behaviour was observed for the artificial seawater. But within measurement uncertainty, the measured hygroscopic growth and droplet activation behaviour for the samples that contained organic matter were consistent with a hygroscopicity parameter that was constant between the sub- and supersaturated measurement points. Also, the hygroscopic growth measured for hydrated particles after 3 and after 10 seconds was similar, which implies that in this time range no kinetic effects were detected

    Determination of pulsation periods and other parameters of 2875 stars classified as MIRA in the All Sky Automated Survey (ASAS)

    Full text link
    We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as 'Mira' in the ASAS data base, referring to pulsation periods, mean maximum magnitudes and, whenever possible, the amplitudes among others. We present a statistical comparison between our results and those given by the AAVSO International Variable Star Index (VSX), as well as those determined with the machine learning automatic procedure of Richards et al. 2012. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al, the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes require still more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275 and 330 d, apparently of universal validity, their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however 1/3 of the targets have rather small amplitudes (A << 2.5m^{m}) and could refer to semi-regular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars which seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagramsComment: 14 pages, 14 figures, and 8 tables. Accepted to The Astrophysical Journal Supplement Series, September 201

    Continuous variable entanglement sharing in non-inertial frames

    Full text link
    We study the distribution of entanglement between modes of a free scalar field from the perspective of observers in uniform acceleration. We consider a two-mode squeezed state of the field from an inertial perspective, and analytically study the degradation of entanglement due to the Unruh effect, in the cases of either one or both observers undergoing uniform acceleration. We find that for two observers undergoing finite acceleration, the entanglement vanishes between the lowest frequency modes. The loss of entanglement is precisely explained as a redistribution of the inertial entanglement into multipartite quantum correlations among accessible and unaccessible modes from a non-inertial perspective. We show that classical correlations are also lost from the perspective of two accelerated observers but conserved if one of the observers remains inertial.Comment: 19 pages, 13 EPS figures (most low-res due to oversize); terminology revise

    The TAOS Project: Upper Bounds on the Population of Small KBOs and Tests of Models of Formation and Evolution of the Outer Solar System

    Get PDF
    We have analyzed the first 3.75 years of data from TAOS, the Taiwanese American Occultation Survey. TAOS monitors bright stars to search for occultations by Kuiper Belt Objects (KBOs). This dataset comprises 5e5 star-hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this dataset. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan & Sari (2005), Kenyon & Bromley (2004), Benavidez & Campo Bagatin (2009), and Fraser (2009). A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is comprised of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution.Comment: 18 pages, 16 figures, Aj submitte
    corecore