108 research outputs found

    Strong coupling between single-electron tunneling and nano-mechanical motion

    Full text link
    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10^5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure

    Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study

    Full text link
    We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small Vn_{n} clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider different cluster structures such as: i) a single V impurity, ii) several V2_{2} dimers having different interatomic distance and varying local atomic environment, iii) V3_{3} and iv) V4_{4} clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the v) V5_{5} and vi) V6_{6} structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.Comment: 7 pages and 4 figure

    Spontaneous Formation of Core@shell Co@Cr Nanoparticles by Gas Phase Synthesis

    Get PDF
    This work presents the gas phase synthesis of CoCr nanoparticles using a magnetron-based gas aggregation source. The effect of the particle size and Co/Cr ratio on the properties of the nanoparticles is investigated. In particular, we report the synthesis of nanoparticles from two alloy targets, Co90Cr10 and Co80Cr20. In the first case, we observe a size threshold for the spontaneous formation of a segregated core@shell structure, related to the surface to volume ratio. When this ratio is above one, a shell cannot be properly formed, whereas when this ratio decreases below unity the proportion of Cr atoms is high enough to allow the formation of a shell. In the latter case, the segregation of the Cr atoms towards the surface gives rise to the formation of a shell surrounding the Co core. When the proportion of Cr is increased in the target (Co80Cr20), a thicker shell is spontaneously formed for a similar nanoparticle size. The magnetic response was evaluated, and the influence of the structure and composition of the nanoparticles is discussed. An enhancement of the global magnetic anisotropy caused by exchange bias and dipolar interactions, which enables the thermal stability of the studied small particles up to relatively large temperatures, is reported

    The CAT-ACT Beamline at ANKA : A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research

    Get PDF
    A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported

    The CAT-ACT Beamline at ANKA: A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research

    Get PDF
    A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported

    Low-energy p-d Scattering: High Precision Data, Comparisons with Theory, and Phase-Shift Analyses

    Get PDF
    Angular distributions of sigma(theta), A_y, iT_11, T_20, T_21, and T_22 have been measured for d-p scattering at E_c.m.=667 keV. This set of high-precision data is compared to variational calculations with the nucleon-nucleon potential alone and also to calculations including a three-nucleon (3N) potential. Agreement with cross-section and tensor analyzing power data is excellent when a 3N potential is used. However, a comparison between the vector analyzing powers reveals differences of approximately 40% in the maxima of the angular distributions which is larger than reported at higher energies for both p-d and n-d scattering. Single-energy phase-shift analyses were performed on this data set and a similar data set at E_c.m.=431.3 keV. The role of the different phase-shift parameters in fitting these data is discussed.Comment: 18 pages, 6 figure

    Curie temperature enhancement of electron doped Sr2_2FeMoO6_6 perovskites studied by photoemission spectroscopy

    Full text link
    We report here on the electronic structure of electron-doped half-metallic ferromagnetic perovskites such Sr2x_{2-x}Lax_xFeMoO6_6 (xx=0-0.6) as obtained from high-resolved valence-band photoemission spectroscopy (PES). By comparing the PES spectra with band structure calculations, a distinctive peak at the Fermi level (EF_F) with predominantly (Fe+Mo) t2g_{2g}^\downarrow character has been evidenced for all samples, irrespectively of the xx values investigated. Moreover, we show that the electron doping due to the La substitution provides selectively delocalized carriers to the t2g_{2g}^\downarrow metallic spin channel. Consequently, a gradual rising of the density of states at the EF_F has been observed as a function of the La doping. By changing the incoming photon energy we have shown that electron doping mainly rises the density of states of Mo parentage. These findings provide fundamental clues for understanding the origin of ferromagnetism in these oxides and shall be of relevance for tailoring oxides having still higher TC_C

    Signatures of three-nucleon interactions in few-nucleon systems

    Get PDF
    Recent experimental results in three-body systems have unambiguously shown that calculations based only on nucleon-nucleon forces fail to accurately describe many experimental observables and one needs to include effects which are beyond the realm of the two-body potentials. This conclusion owes its significance to the fact that experiments and calculations can both be performed with a high accuracy. In this review, both theoretical and experimental achievements of the past decade will be underlined. Selected results will be presented. The discussion on the effects of the three-nucleon forces is, however, limited to the hadronic sector. It will be shown that despite the major successes in describing these seemingly simple systems, there are still clear discrepancies between data and the state-of-the-art calculations.Comment: accepted for publication in Rep. Prog. Phy

    Growth and magnetic characterization of Co nanoparticles obtained by femtosecond pulsed laser deposition

    Get PDF
    We present a detailed study on the morphology and magnetic properties of Co nanostructures deposited onto oxidized Si substrates by femtosecond pulsed laser deposition. Generally, Co disks of nanometric dimensions are obtained just above the ablation threshold, with a size distribution characterized by an increasingly larger number of disks as their size diminishes, and with a maximum disk size that depends on the laser power density. In Au/Co/Au structures, in-plane magnetic anisotropy is observed in all cases, with no indication of superparamagnetism regardless of the amount of material or the laser power density. Magnetic force microscopy observations show coexistence of single-domain and vortex states for the magnetic domain structure of the disks. Superconducting quantum interference device magnetometry and x-ray magnetic circular dichroism measurements point to saturation magnetization values lower than the bulk, probably due to partial oxidation of the Co resulting from incomplete coverage by the Au capping layer.Work was supported in part by the U.S. Department of Energy, Basic Energy Sciences (Grant No. DE-FG02-06ER46273), NSF FOCUS Center, the Spanish Ministerio de Educación y Ciencia (References No. PR2005-0017 and No.MAT2005-05524-C02), Comunidad de Madrid (Reference No. S-0505/MAT/0194 NANOMAGNET), and CSIC (Reference No. 200650I130). Support from the SRS staff during the XMCD experiments is greatly acknowledged. Y.H. and L.M. also acknowledge financial support from the “Ramón y Cajal” and “Juan de la Cierva” programs, respectively, from the Spanish Ministerio de Investigación y Ciencia and Consejo Superior de Investigaciones Científicas (CSIC).Peer reviewe

    Angle-resolved photoemission study and first principles calculation of the electronic structure of GaTe

    Full text link
    The electronic band structure of GaTe has been calculated by numerical atomic orbitals density-functional theory, in the local density approximation. In addition, the valence-band dispersion along various directions of the GaTe Brillouin zone has been determined experimentally by angle-resolved photoelectron spectroscopy. Along these directions, the calculated valence-band structure is in good concordance with the valence-band dispersion obtained by these measurements. It has been established that GaTe is a direct-gap semiconductor with the band gap located at the Z point, that is, at Brillouin zone border in the direction perpendicular to the layers. The valence-band maximum shows a marked \textit{p}-like behavior, with a pronounced anion contribution. The conduction band minimum arises from states with a comparable \textit{s}- \textit{p}-cation and \textit{p}-anion orbital contribution. Spin-orbit interaction appears to specially alter dispersion and binding energy of states of the topmost valence bands lying at Γ\Gamma. By spin-orbit, it is favored hybridization of the topmost \textit{p}z_z-valence band with deeper and flatter \textit{px_x}-\textit{py_y} bands and the valence-band minimum at Γ\Gamma is raised towards the Fermi level since it appears to be determined by the shifted up \textit{px_x}-\textit{py_y} bands.Comment: 7 text pages, 6 eps figures, submitted to PR
    corecore