236 research outputs found

    Children's play space and safety management: rethinking the role of play equipment standards

    Get PDF
    The provision of stimulating and engaging play space for children and young people is increasingly recognized as an important societal goal, not the least because it provides the young with opportunities to develop and gain experience in experimenting with risk. Research in several disciplines now suggests that achievement of this goal has however been impeded in recent decades, and reasons commonly cited have included fear of injury and avoidance of litigation. International standards on play equipment have also been promulgated and justified in terms of securing young people’s “safety,” most usually narrowly defined as injury reduction. There appears to be a widespread presumption that measures aimed at injury prevention are necessarily beneficial overall for young people’s welfare. In this article, we subject European standards for play equipment and surfacing to scrutiny. In particular, we examine underlying motives, consistency of purpose, use of evidence, philosophical leanings, scope, practicalities of application, systems of management, and legal ramifications. From this, we identify a number of fundamental issues that suggest that as a consequence of compartmentalized thinking and misunderstandings, these standards have invaded areas of decision making beyond their legitimate territory. The consequence of this is that play provision is skewed away from what are properly play provision objectives. In such circumstances, local decision makers are often disempowered, and their ability to provide optimal play spaces thereby circumscribed

    Interfacial Particle Dynamics: One and Two Step Yielding in Colloidal Glass.

    Get PDF
    The yielding behavior of silica nanoparticles partitioned at an air-aqueous interface is reported. Linear viscoelasticity of the particle-laden interface can be retrieved via a time-dependent and electrolyte-dependent superposition, and the applicability of the "soft glassy rheology" (SGR) model is confirmed. With increasing electrolyte concentration (φ(elect)) in the aqueous subphase, a nonergodic state is achieved with particle dynamics arrested first from attraction induced bonding bridges and then from the cage effect of particle jamming, manifesting in a two-step yielding process under large amplitude oscillation strain (LAOS). The Lissajous curves disclose a shear-induced in-cage particle redisplacement within oscillation cycles between the two yielding steps, exhibiting a "strain softening" transitioning to "strain stiffening" as the interparticle attraction increases. By varying φ(elect) and the particle spreading concentration, φ(SiO2), a variety of phase transitions from fluid- to gel- and glass-like can be unified to construct a state diagram mapping the yielding behaviors from one-step to two-step before finally exhibiting one-step yielding at high φ(elect) and φ(SiO2)

    Avoiding a dystopian future for children's play

    Get PDF
    Describes the conflict between children's freedom to play and the quest for safety and makes recommendations for the future

    The effect of cationic surfactants on improving natural clinoptilolite for the flotation of cesium

    Get PDF
    Flotation using cationic surfactants has been investigated as a rapid separation technique to dewater clinoptilolite ion exchange resins, for the decontamination of radioactive cesium ions (Cs+) from nuclear waste effluent. Initial kinetic and equilibrium adsorption studies of cesium, suggested the large surface area to volume ratio of the fine zeolite contributed to fast adsorption kinetics and high capacities (qc = 158.3 mg/g). Adsorption of ethylhexadecyldimethylammonium bromide (EHDa-Br) and cetylpyridinium chloride (CPC) surfactant collectors onto both clean and 5 ppm Cs+ contaminated clinoptilolite was then measured, where distribution coefficients (Kd) as high as 10,000 mL/g were evident with moderate concentrations CPC. Measurements of particle sizes confirmed that adsorption of surfactant monolayers did not lead to significant aggregation of the clinoptilolite, while 4, highlighting the great viability of flotation to separate and concentrate the contaminated powder in the froth phase

    The effect of pre-activation and milling on improving natural clinoptilolite for ion exchange of cesium and strontium

    Get PDF
    Natural clinoptilolite, of relatively low-grade, was investigated for its capability to remove cesium and strontium ions from water and simulated seawater. To improve its capacity, the material was pre-activated with concentrated NaCl and HCl solutions. Additionally, it was milled to a number of < 300 μm size fractions, to expose exchange sites. Electron microscopy was used to characterise the naturally occurring impurities, where regions of high iron and potassium content was shown to correlate to lower levels of cesium adsorption. Adsorption kinetics for natural and activated resins with 5, 300 and 1500 ppm salt solutions were fitted with the Pseudo-Second Order (PSO) rate model. Activation led to clear increases in initial adsorption rate for both Cs+ and Sr2+, but only enhanced the overall rate constant for Cs+, due to the weaker interaction of the Sr2+. Equilibrium isotherms were compared with Langmuir and Freundlich monolayer models, where the adsorption capacity (Qc) for Cs+ was 67 mg/g which increased by over 100% with NaCl activation to 140 mg/g. Values for Sr2+ were significantly lower at 35 mg/g, with a considerably smaller enhancement with activation to 52 mg/g. Milling of the natural clinoptilolite was found to increase Cs+ uptake to similar levels as activation, in a linear correlation with specific surface area; although, improvements for Sr2+ were again lower, due to its weaker interaction with surface sites. In simulated seawater solutions, all materials gave considerably reduced performance due to K+ ion competition, with Sr2+ uptake decreased more extensively compared to Cs+. Overall, this work highlights that pre-activation and milling of clinoptilolite can be used to significantly enhance the grade of the ore for nuclear effluent treatment in low-salinity conditions

    Probing Mechanical Properties of Water-Crude Oil Interfaces and Colloidal Interactions of Petroleum Emulsions using Atomic Force Microscopy

    Get PDF
    Atomic force microscopy (AFM) is frequently used to elucidate complex interactions in emulsion systems. However, comparing results obtained with “model” planar surfaces to curved emulsion interfaces often proves unreliable, because droplet curvature can affect adsorption and arrangement of surface-active species, while droplet deformation affects the net interaction force. In the current study, AFM was used to study the interactions between a colloidal probe and water droplet. Force magnitude and water droplet deformation were measured in toluene solutions of asphaltene or bitumen at different concentrations and varying droplet aging time. Interfacial stiffening and an increase in particle–droplet adhesion force were observed upon droplet aging in bitumen solution. As reported in our previous study (Kuznicki, N. P., Harbottle, D., Masliyah, J., and Xu, Z.Dynamic Interactions between a Silica Sphere and Deformable Interfaces in Organic Solvents Studied by Atomic Force Microscopy. Langmuir 2016, 32 (38), 9797−9806), a viscoelasticity parameter should be included in the high-force Stokes–Reynolds–Young–Laplace (SRYL) equations to account for the interfacial stiffening and non-Laplacian response of the water droplet at longer aging times. However, following the addition of a biodegradable demulsifier, ethyl cellulose (EC), an immediate reduction in both the particle–droplet adhesion force and the rigidity of the water droplet occurred. Following EC addition, the interface reverted back to a Laplacian response and droplet deformation was once again accurately predicted by the classical SRYL model. These changes in both droplet deformation and particle–droplet adhesion, tracked by AFM, imply a rapid asphaltene/bitumen film displacement by EC molecules. The colloidal probe technique provides a convenient way to quantify forces at deformable oil/water interfaces and characterize the in situ effectiveness of competing surface-active species

    Molecular Interactions between a Biodegradable Demulsifier and Asphaltenes in an Organic Solvent

    Get PDF
    A surface forces apparatus (SFA) was used to measure the intermolecular forces between a biodegradable demulsifier (ethyl cellulose, EC) and asphaltenes immobilized individually on molecularly smooth mica surfaces in an organic solvent. A steric repulsion on approach between the immobilized EC layers and asphaltenes was measured despite strong adhesion (Fad/R ≈ −2 mN/m; Wad = 0.42 mJ/m2) during retraction. The measured adhesion was attributed to the interpenetration and tangling of aliphatic branches of swollen asphaltenes and solvated chains of EC macromolecules. Competitive adsorption of EC on/in immobilized asphaltene layers was confirmed by combining SFA force measurements and atomic force microscopy (AFM) imaging. Following the injection of EC-in-toluene solution, an immediate (<5 min) increase in the confined layer thickness of the immobilized asphaltene layers was measured. Irreversibly adsorbed asphaltenes were displaced by EC macromolecules through binding with unoccupied surface sites on mica, followed by the spreading of EC across the mica substrate due to increased surface activity governed by the higher number of hydroxyl groups per EC molecule. AFM imaging confirmed that the increase in confined layer thickness resulted from the formation of larger asphaltene aggregates/clusters protruding from the mica substrate. Molecular level topographical images showed that the asphaltenes were not resolvated in the organic phase but self-associated as the EC macromolecules spread across the hydrophilic mica substrate. The results from this study provide not only fundamental insights into the basic interaction mechanisms of asphaltenes with EC macromolecules as a demulsifier in organic media but also directions toward enhancing demulsification of water-in-oil emulsions

    Development of a Microarray system for the Rapid and Simultaneous Detection of Bacterial and Viral Foodborne Pathogens

    Get PDF
    Foodborne diseases are increasingly recognized as a significant global public health problem despite major advances and improvements in the quality of food, water, sanitation and hygiene. However, detection and characterization of foodborne pathogens during outbreak scenarios remains a laborious and time-consuming task. The aim of this work was to develop an oligonucleotide microarray for rapid detection and characterization of the most important infectious bacterial (Campylobacter, Salmonella and Yersinia) and viral (Noroviruses) pathogens found in swine and associated pork products. A total of 272 target regions and genes were identified that were specific for pathogen identification and characterization of specific antimicrobial resistance and virulence determinants. We designed multiple probes (up to three) per gene to increase the sensitivity and specificity of the microarray. After BLAST analysis, a total of 562 probes were finally selected to be printed on to glass slides. Appropriate control strains that were previously characterized in our laboratories by PCR were selected to test the developed arrays. Preliminary results indicated that the designed probes were highly specific and sensitive for identification of tested pathogens and known res1stance and virulence genes present in the selected control strains

    Bio-Inspired Preparation of Clay–Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs+

    Get PDF
    A facile and low-cost fabrication route, inspired by the adhesive proteins secreted by mussels, has been developed to prepare a clay-based composite hydrogel (DHG(Cu)) containing hexacyanoferrate (HCF) nanoparticles for the selective removal of Cs+ from contaminated water. Initially, montmorillonite was exfoliated prior to coating with a thin layer of polydopamine (PDOPA) via the self-polymerization of dopamine. Mixing the composite (D-clay) with the HCF precursor, followed by the addition of copper ions, led to the self-assembly of the polymer-coated exfoliated clay nanosheets into a three-dimensional network and in situ growth of KCuHCF nanoparticles embedded within the gel structure. Analytical characterization verified the fabrication route and KCuHCF immobilization by a copper–ligand complexation. Rheology testing revealed the composite hydrogel to be elastic under low strain and exhibited reversible, self-healing behavior following high strain deformation, providing a good retention of KCuHCF nanoparticles in the membrane. The adsorbent DHG(Cu) showed a superior Cs+ adsorption capacity (∼173 mg/g), with the performance maintained over a wide pH range, and an excellent selectivity for Cs+ when dispersed in seawater at low concentrations of 0.2 ppm. On the basis of its excellent mechanico-chemical properties, the fabricated hydrogel was tested as a membrane in column filtration, showing excellent removal of Cs+ from Milli-Q water and seawater, with the performance only limited by the fluid residence time. For comparison, the study also considered other composite hydrogels, which were fabricated as intermediates of DHG(Cu) or fabricated with Fe3+ as the cross-linker and reactant for HCF nanoparticle synthesis

    Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates

    Full text link
    In a recent series of papers evidence has been presented for correlations between solar activity and nuclear decay rates. This includes an apparent correlation between Earth-Sun distance and data taken at Brookhaven National Laboratory (BNL), and at the Physikalisch-Technische Bundesanstalt (PTB). Although these correlations could arise from a direct interaction between the decaying nuclei and some particles or fields emanating from the Sun, they could also represent an "environmental" effect arising from a seasonal variation of the sensitivities of the BNL and PTB detectors due to changes in temperature, relative humidity, background radiation, etc. In this paper, we present a detailed analysis of the responses of the detectors actually used in the BNL and PTB experiments, and show that sensitivities to seasonal variations in the respective detectors are likely too small to produce the observed fluctuations
    corecore