2,677 research outputs found

    Temperature-Dependent Refractive Index Measurements of Caf2, Suprasil 3001, and S-FTM16 for the Euclid Near Infrared Spectrometer and Photometer

    Get PDF
    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS

    Collective Feshbach scattering of a superfluid droplet from a mesoscopic two-component Bose-Einstein condensate

    Full text link
    We examine the collective scattering of a superfluid droplet impinging on a mesoscopic Bose-Einstein condensate (BEC) as a target. The BEC consists of an atomic gas with two internal electronic states, each of which is trapped by a finite-depth external potential. An off-resonant optical laser field provides a localized coupling between the BEC components in the trapping region. This mesoscopic scenario matches the microscopic setup for Feshbach scattering of two particles, when a bound state of one sub-manifold is embedded in the scattering continuum of the other sub-manifold. Within the mean-field picture, we obtain resonant scattering phase shifts from a linear response theory in agreement with an exact numerical solution of the real time scattering process and simple analytical approximations thereof. We find an energy-dependent transmission coefficient that is controllable via the optical field between 0 and 100%.Comment: 4 Latex pages, including 4 figure

    Systematic NLTE study of the -2.6 < [Fe/H] < 0.2 F and G dwarfs in the solar neighbourhood. I. Stellar atmosphere parameters

    Full text link
    We present atmospheric parameters for 51 nearby FG dwarfs uniformly distributed over the -2.60 < [Fe/H] < +0.20 metallicity range that is suitable for the Galactic chemical evolution research. Lines of iron, Fe I and Fe II, were used to derive a homogeneous set of effective temperatures, surface gravities, iron abundances, and microturbulence velocities. We used high-resolution (R>60000) Shane/Hamilton and CFHT/ESPaDOnS observed spectra and non-local thermodynamic equilibrium (NLTE) line formation for Fe I and Fe II in the classical 1D model atmospheres. The spectroscopic method was tested with the 20 benchmark stars, for which there are multiple measurements of the infrared flux method (IRFM) Teff and their Hipparcos parallax error is < 10%. We found NLTE abundances from lines of Fe I and Fe II to be consistent within 0.06 dex for every benchmark star, when applying a scaling factor of S_H = 0.5 to the Drawinian rates of inelastic Fe+H collisions. The obtained atmospheric parameters were checked for each program star by comparing its position in the log g-Teff plane with the theoretical evolutionary track in the Yi et al. (2004) grid. Our final effective temperatures lie in between the T_IRFM scales of Alonso et al. (1996) and Casagrande et al. (2011), with a mean difference of +46 K and -51 K, respectively. NLTE leads to higher surface gravity compared with that for LTE. The shift in log g is smaller than 0.1 dex for stars with either [Fe/H] > -0.75, or Teff 4.20. NLTE analysis is crucial for the VMP turn-off and subgiant stars, for which the shift in log g between NLTE and LTE can be up to 0.5 dex. The obtained atmospheric parameters will be used in the forthcoming papers to determine NLTE abundances of important astrophysical elements from lithium to europium and to improve observational constraints on the chemo-dynamical models of the Galaxy evolution.Comment: 18 pages, 14 figures, accepted for publication in Ap

    Theory of extraordinary optical transmission through subwavelength hole arrays

    Full text link
    We present a fully three-dimensional theoretical study of the extraordinary transmission of light through subwavelength hole arrays in optically thick metal films. Good agreement is obtained with experimental data. An analytical minimal model is also developed, which conclusively shows that the enhancement of transmission is due to tunneling through surface plasmons formed on each metal-dielectric interfaces. Different regimes of tunneling (resonant through a ''surface plasmon molecule", or sequential through two isolated surface plasmons) are found depending on the geometrical parameters defining the system.Comment: 4 pages, 4 figure

    Positron lifetime measurements on neutron‐irradiated InP crystals

    Get PDF
    Neutron‐irradiated InP single crystals have been investigated by positron‐lifetime measurements. The samples were irradiated with thermal neutrons at different fluences yielding concentrations for Sn‐transmuted atoms between 2×1015 and 2×1018 cm−3. The lifetime spectra have been analyzed into one exponential decay component. The mean lifetimes show a monotonous increase with the irradiation dose from 246 to 282 ps. The increase in the lifetime has been associated to a defect containing an Indium vacancy. Thermal annealing at 550 °C reduces the lifetime until values closed to those obtained for the as‐grown and conventionally doped InP [email protected] ; [email protected]

    Regional environments and sector developments: the biotech sector in Oxfordshire

    Get PDF
    This paper explores the interdependence between national policy, the local characteristics of the UK’s biotechnology sectoral system of innovation and the growth of Oxfordshire’s biotech sector. It considers on the one hand the county’s research capacity and on the other its innovation performance. The latter is captured by a series of indicators from a recently completed study of the sector, recording the sector’s evolution both in the number of firms and their employment size, their status (independent, merged/acquired), product group and contribution to local employment and wealth creation. It considers the implications of the relative weaknesses in the system of innovation in this sector which relate to an underperformance of its firms in relation to the strength of the science base

    Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1

    Get PDF
    Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of \sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review
    corecore