2,589 research outputs found

    M-Horizons

    Full text link
    We solve the Killing spinor equations and determine the near horizon geometries of M-theory that preserve at least one supersymmetry. The M-horizon spatial sections are 9-dimensional manifolds with a Spin(7) structure restricted by geometric constraints which we give explicitly. We also provide an alternative characterization of the solutions of the Killing spinor equation, utilizing the compactness of the horizon section and the field equations, by proving a Lichnerowicz type of theorem which implies that the zero modes of a Dirac operator coupled to 4-form fluxes are Killing spinors. We use this, and the maximum principle, to solve the field equations of the theory for some special cases and present some examples.Comment: 36 pages, latex. Reference added, minor typos correcte

    All null supersymmetric backgrounds of N=2, D=4 gauged supergravity coupled to abelian vector multiplets

    Full text link
    The lightlike supersymmetric solutions of N=2, D=4 gauged supergravity coupled to an arbitrary number of abelian vector multiplets are classified using spinorial geometry techniques. The solutions fall into two classes, depending on whether the Killing spinor is constant or not. In both cases, we give explicit examples of supersymmetric backgrounds. Among these BPS solutions, which preserve one quarter of the supersymmetry, there are gravitational waves propagating on domain walls or on bubbles of nothing that asymptote to AdS_4. Furthermore, we obtain the additional constraints obeyed by half-supersymmetric vacua. These are divided into four categories, that include bubbles of nothing which are asymptotically AdS_4, pp-waves on domain walls, AdS_3 x R, and spacetimes conformal to AdS_3 times an interval.Comment: 55 pages, uses JHEP3.cls. v2: Minor errors corrected, small changes in introductio

    Control of large space structures

    Get PDF
    The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only

    Solutions of Minimal Four Dimensional de Sitter Supergravity

    Full text link
    Pseudo-supersymmetric solutions of minimal N=2N=2, D=4D=4 de Sitter supergravity are classified using spinorial geometry techniques. We find three classes of solutions. The first class of solution consists of geometries which are fibrations over a 3-dimensional manifold equipped with a Gauduchon-Tod structure. The second class of solution is the cosmological Majumdar-Papapetrou solution of Kastor and Traschen, and the third corresponds to gravitational waves propagating in the Nariai cosmology.Comment: 17 Pages. Minor correction to section 4; equation (4.21) corrected and (old) equation (4.26) deleted; the final result is unchange

    LabView Interface for School-Network DAQ Card

    Get PDF
    A low-cost DAQ card has been developed for school-network cosmic ray detector projects, providing digitized data from photomultiplier tubes via a standard serial interface. To facilitate analysis of these data and to provide students with a starting point for custom readout systems, a model interface has been developed using the National Instruments LabVIEW(R) system. This user-friendly interface allows one to initialize the trigger coincidence conditions for data-taking runs and to monitor incoming or pre-recorded data sets with updating singles- and coincidence-rate plots and other user-selectable histograms.Comment: 4 pages, 6 figures. Presented as Paper NS26-119 at IEEE-NSS 2003, Portland, OR, by R. J. Wilke

    All the supersymmetric solutions of N=1,d=5 ungauged supergravity

    Get PDF
    We classify the supersymmetric solutions of ungauged N=1 d=5 SUGRA coupled to vector multiplets and hypermultiplets. All the solutions can be seen as deformations of solutions with frozen hyperscalars. We show explicitly how the 5-dimensional Reissner-Nordstrom black hole is deformed when hyperscalars are living on SO(4,1)/SO(4) are turned on, reducing its supersymmetry from 1/2 to 1/8. We also describe in the timelike and null cases the solutions that have one extra isometry and can be reduced to N=2,d=4 solutions. Our formulae allows the uplifting of certain N=2,d=4 black holes to N=1,d=5 black holes on KK monopoles or to pp-waves propagating along black strings.Comment: Some typos fixed and some paragraphs improved. 44 pages, Latex 2e file, no figures. Version to be published in JHE

    The spinorial geometry of supersymmetric heterotic string backgrounds

    Full text link
    We determine the geometry of supersymmetric heterotic string backgrounds for which all parallel spinors with respect to the connection ∇^\hat\nabla with torsion HH, the NS⊗\otimesNS three-form field strength, are Killing. We find that there are two classes of such backgrounds, the null and the timelike. The Killing spinors of the null backgrounds have stability subgroups K\ltimes\bR^8 in Spin(9,1)Spin(9,1), for K=Spin(7)K=Spin(7), SU(4), Sp(2)Sp(2), SU(2)×SU(2)SU(2)\times SU(2) and {1}\{1\}, and the Killing spinors of the timelike backgrounds have stability subgroups G2G_2, SU(3), SU(2) and {1}\{1\}. The former admit a single null ∇^\hat\nabla-parallel vector field while the latter admit a timelike and two, three, five and nine spacelike ∇^\hat\nabla-parallel vector fields, respectively. The spacetime of the null backgrounds is a Lorentzian two-parameter family of Riemannian manifolds BB with skew-symmetric torsion. If the rotation of the null vector field vanishes, the holonomy of the connection with torsion of BB is contained in KK. The spacetime of time-like backgrounds is a principal bundle PP with fibre a Lorentzian Lie group and base space a suitable Riemannian manifold with skew-symmetric torsion. The principal bundle is equipped with a connection λ\lambda which determines the non-horizontal part of the spacetime metric and of HH. The curvature of λ\lambda takes values in an appropriate Lie algebra constructed from that of KK. In addition dHdH has only horizontal components and contains the Pontrjagin class of PP. We have computed in all cases the Killing spinor bilinears, expressed the fluxes in terms of the geometry and determine the field equations that are implied by the Killing spinor equations.Comment: 73pp. v2: minor change
    • …
    corecore