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1 Introduction

With Ref. [1], Gauntlett et al. revolutionized the art of finding supersymmetric solu-
tions, by extending the methods pioneered by Tod [2] and applying them to classify the
supersymmetric solutions of minimal N = 1 d = 5 supergravity. Since then, there has
been a renewed, vigorous and systematic effort in the literature to classify, or at least
characterize, generic supersymmetric solutions of supergravity theories. In the framework
of N = 1,d = 5 SUGRA the results of Ref. [1] were extended to the gauged case in
Ref. [3], to include the coupling to an arbitrary number of vector multiplets in Ref. [4]
and their Abelian gaugings were further considered in Refs. [5, 6]*. In the framework of
N = 2,d = 4 SUGRA the new methods allowed the extension of Tod’s results to pure
gauged N = 2,d = 4 SUGRA [9] and to ungauged N = 2,d = 4 SUGRA coupled to an
arbitrary number of vector multiplets [10] and hypermultiplets [11]. The minimal d = 6
SUGRA was dealt with in Refs. [12, 13], some gaugings were considered in Ref. [14] and
the coupling to hypermultiplets has been fully solved in Ref. [15]. Further works in other
(higher) dimensions and number of supercharges or based on the alternative methods of
spinorial geometry are Refs. [16, 17].

In this paper we will extend further the results obtained in ungauged N = 1,d =
5 SUGRA to include, on top of vector multiplets, hypermultiplets. This problem was
considered before by Cacciatori, Celi and Zanon in Refs. [18, 19, 20|, making progress
towards a full solution of the problem which we present here.

Similar works in 4- and 6-dimensional SUGRAs with 8 supercharges (N = 2,d = 4 and
N = (1,0),d = 6) coupled to vector multiplets and hypermultiplets have been recently
published [11, 15]. As the observant reader will see, there is a staggering similarity between
the results found in those works and the ones presented here. The reason for this is simply
because the hypermultiplets have a very characteristic, and minimal, way of coupling to the
rest of the fields, a coupling that is roughly the same in the 3 theories with 8 supercharges,
wherefore the resulting structures should be comparable.

Let us describe our results qualitatively: all the supersymmetric solutions can be seen
as deformations of supersymmetric solutions with the same electric and magnetic charges
but frozen hyperscalars (which is effectively the same as having only vector multiplets),
which were classified in Ref. [3]. The effect of defrosting the hyperscalars is an electric
and magnetic charge preserving deformation of those solutions; the deformations consist
in a deformation of the base space in the timelike case and of the wavefront space in the
null case. To be more precise, in the timelike case, the metrics of all the supersymmetric
solutions have the general conformastationary form

ds? = f2(dt + w)* — f hynda™dz™ . (1.1)

Rmn 1s the time-independent base space metric and when dealing with frozen hypermulti-
plets, it has to be hyper-Kéahler. The metric, with f =1 and w = 0 and vanishing matter
fields is a supersymmetric solution by itself and can be seen as a background which is

4Previous work on these theories can be found in Refs. [7, 8].



excited when electric and magnetic charges are turned on. The functions f and w are es-
sentially determined by the electric and magnetic charges and satisfy covariant differential
equations in the base space.

When the hyperscalars are turned on h,,, is no longer a hyper-Kéahler manifold: the
form of this metric is dictated by two requirements

1. The hyperscalars ¢ () are quaternionic maps® from the base space to the quaternionic-
Kahler target manifold.

2. The anti-selfdual part of the spin connection of the base manifold has to be equal
(up to gauge transformations) to the pullback of the su(2) connection characterizing
the quaternionic-Kéhler target manifold.

These two conditions are interwoven but, as we will show in an explicit example, can be
solved simultaneously.

Now, the metric, with f = 1 and w = 0, vanishing vector multiplets but unfrozen
hyperscalars is a supersymmetric solution by itself and can be seen as a background which
is excited when electric and magnetic charges are turned on. The functions f and w satisfy
the same covariant differential equations as before but in the new base space metric.

These solutions generically preserve only 1/8 of the available 8 supersymmetries.

In the null case, the metric is generically of the form

ds® = 2fdu(dv + Hdu + w) — fdx"dz* (1.2)

where r, s = 1,2,3 and all functions are v-independent. The functions f and H and the
1-form w depend on the electric and magnetic charges and satisfy differential equations
in the background of the 3-dimensional wavefront metric 7,,. When the hyperscalars are
frozen, this metric is flat; when they are turned on, the 3-dimensional metric is determined
by exactly the same two conditions that the base space of supersymmetric solutions of
N =2,d =4 SUGRA coupled to hypermultiplets satisfy, namely

1. The hyperscalars must satisfy

2.¢% fx o = 0. (1.3)

2. The spin connection of the 3-dimensional metric must be equal (up to gauge transfor-
mations) to the pull-back of the the su(2) connection that characterizes the quaternionic-
Kéhler target manifold.

This suggests a relation with the 4-dimensional solutions. We thus consider the particu-
lar case in which the metric has an additional isometry and is, in particular, u-independent.
It is not difficult to see that in general the solutions of the null case describe pp-waves prop-
agating along a string. Solutions which are u-independent can be compactified along the

® Please see the discussion after Eq. (4.30) for more information about the notion of quaternionic maps.
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direction in which the wave propagates, i.e. along the string and give solutions belonging
to the 4-dimensional timelike class, .e. black hole-type solutions.

This set of 5-dimensional solutions and their reductions are presented here for the first
time and allow an uplifting of 4-dimensional black-hole-type solutions (with or without
hypermultiplets) to d = 5 dimensions different from the one considered in Refs. [21, 22,
23, 24, 25, 26, 27]. There, 4-dimensional black holes were uplifted to 4-dimensional black
holes in a KK monopole background. Here we are dealing with the electric-magnetic dual
uplift since the simplest 5-dimensional pp-wave and the Sorkin-Gross-Perry KK monopole
[28] are related by dimensional reduction to d = 4 dimensions and 4-dimensional electric-
magnetic duality, the 4-dimensional solution being the so-called “KK black hole”, which in
this simple case is singular. This relation is known in the general case under the name of
“r-map”, whence the r-map will relate these new string-pp-wave upliftings® to the known
black hole-KK monopole upliftings.

This uplift may be more convenient to understand the black hole solutions from a
higher-dimensional point of view since they are direct realizations of the D1-D5-W model.
It may shed light on Mathur’s conjecture [30, 31] on the realization of D1-D5-W microstates
as supergravity solutions [32].

For the sake of completeness we have also worked out the timelike case with one addi-
tional isometry as, with frozen hyperscalars, all of the interesting solutions (supersymmetric
rotating black holes and black rings [33]) seem to belong to this class [1, 34, 4]. The base
space manifold is now a generalization of the Gibbons-Hawking instanton metric [35]. The
Gibbons-Hawking instanton metric is the most general 4-dimensional hyper-Kéahler metric
with one isometry and can be used as a base space metric h,,, in absence of hyperscalars.
It has the form

dsa) = H '(dz + x)* + Hb,edx"dx®, 71,5 =1,2,3, (1.4)

where H is a function harmonic on 3-dimensional Euclidean space.
In presence of unfrozen hyperscalars the metric to be considered is

ds%4) = H Y (dz+ x)* + Hypeda"daz®, 7,5 =1,2,3, (1.5)

where the spin connection of the 3-dimensional metric 7,5 has to be equal (up to gauge
transformations) to the pullback of the su(2) connection of the hyperscalar manifold.
This paper is organized as follows: in Section 2 we describe ungauged N = 1,d = 5
supergravity coupled to vector multiplets and hypermultiplets. In Section 3 we derive
the integrability conditions (KSIs) of the Killing spinor equations (KSEs), that relate the
equations of motion of the fields for supersymmetric configurations, which will allow us
to minimize the number of independent equations that need to be solved. In Section 4
we proceed to find the supersymmetric configurations and solutions, both in the timelike,
(Section 4.1,) and in the null (Section 4.3) classes. An explicit example of the timelike class

6 A particular case of this kind of uplifting was also observed in Ref. [29], although the 5-dimensional
solutions were interpreted as rotating strings.



with unfrozen hyperscalars is given in Section 4.2 and the general subclasses of solutions
that generically have one additional isometry are given in Sections 4.2.1 (timelike case) and
Section 4.3.3 (null case). Section 5 contains our conclusions and final thoughts. Appendix A
contains our conventions on gamma matrices, spinors, spinor bilinears and real special
geometry. Appendix B contains a brief introduction to quaternionic-Kéahler manifolds.
Finally, Appendices C and D contain the necessary geometric data for the 5-dimensional
metrics that appear in this paper.

2 Matter-coupled, ungauged N = 1,d = 5 supergravity

In this section we describe briefly the supergravity theories we will be working with:
N = 1,d = 5 (minimal) ungauged supergravity coupled to n, vector multiplets and ny,
hypermultiplets’.

The supergravity multiplet consists of the graviton e?,, the graviphoton A, and the
gravitino w;. The gravitino and the rest of spinors in the theory are pairs of symplectic-
Majorana spinors 7 = 1,2 as explained in Appendix A.1.

Each of the n, vector multiplets, labeled by = 1,---,n, consists of one real vector
field A7, a real scalar ¢” and a gaugino A% The scalars ¢, parametrize a Riemannian
manifold which we call "the scalar manifold”. The full theory is formally invariant under
an SO(n, + 1) symmetry that mixes the matter vectors A%, with the supergravity vector
A, = A%, and so it is convenient to treat all the vector fields on the same footing denoting
them by A7, I =0,---,n,. The symmetry that rotates the vectors acts on the scalars as
well and, to make it manifest one defines n, + 1 functions of the physical scalars hf(¢).
These functions satisfy the constraint

Croxh'h’h =1, (2.1)

where C} i is a fully symmetric real constant tensor which characterizes completely the
couplings in the vectorial sector. In particular it determines the metric of the scalar
manifold g,,(¢) on the target of ¢”, the couplings between scalars and vector fields a;(¢)
and the coupling constants of the vector field Chern-Simons terms. The relations between
these fields are given in the Appendix A.3.

Each of the n; hypermultiplets consists of four real scalar-fields (hyperscalars) ¢,
X =1,---,4ny, and two spinor fields (hyperinos) (4, A =1,...,2n;. The index i associated
to the symplectic-Majorana condition is embedded into the index A. The hyperscalars ¢~
parametrize a quaternionic-Kéahler manifold, described in Appendix B, that we will refer
to as the hypervariety. In particular we observe that the connection of quaternionic-Kéhler
manifolds can be decomposed in an sp(1) ~ su(2) and an sp(n;) component whose pullback
to spacetime will act on objects with index ¢ and A, respectively.

"We follow essentially the notation and conventions of Ref. [37] with some minor changes to adapt them
to those in Refs. [38, 39]. The changes are explained in Appendix A. The original references on matter-
coupled N = 1,d = 5 SUGRA are [40] and [41]. The origin of these theories from compactifications of
11-dimensional supergravity on Calabi-Yau 3-folds was studied in Ref. [42].



The bosonic part of the action is

S = /d5x\/§ {R + 390y 0u 0" 0" Y + 39xv 0, Mg
(2.2)
ghvpoa

V9

Observe that the hyperscalars do not couple to any of the fields in the vector multiplets
and couple to the supergravity multiplet only through the metric. This is similar to what
happens in N = 2,d = 4 theories and will have similar consequences.

We use the following notation for the equations of motion

_1 I v nJ 1
qar FP Y EY L+ 12\/§CIJK

FIWFJ,MAKQ} .

1 48 1 68 1 68 1 68

gau =—5 = gx X = a

svise, &= e S Tymae O Jpean,

which are given by

(2.3)

Ew = Gu— %aU (FINPFJVP - }LQMVFIPUFJPU) + %gwy (8M¢$8ng5y - %guvap¢zap¢y)

+%gXY (8Marqu - %guuapqxapqy) ) (24)

gE, = D,0"¢° + Lg™d,ar, F17FY (2.5)

gVE = 2,0, (2.6)
o Jvp 1 ghveoe J J

5] = VV(CLIJF ) + mC[JK—F ,/pF oo - (27)

V9

To these definitions we add the following notation for the Bianchi identities of the vector
fields:

By = 3VEy,). (2.8)

In these equations ®©, is the covariant derivative in the spacetime and in the corre-
sponding scalar manifold. Then, Eq. (2.6) states that ¢ is a harmonic map from spacetime
to the hypervariety.

The supersymmetry transformation rules for the fermionic fields, evaluated on vanishing
fermions, are



0y, = Dy — gzhiF1% (Yuap — 4guas) € (2.9)
SN = L (6" —ihy FT) € (2.10)

5t = LM Pg¥e, (2.11)

where D,, is the Lorentz- and SU(2)-covariant derivative

D' =V, e + €A}, (2.12)

and the su(2) connection is the pullback of the su(2) connection of the hypervariety:

A", = 0,0 wx”, A/l = iAo (2.13)

Observe that the hyperscalars only appear in the gravitino’s and gauginos’ supersym-
metry transformation rules precisely through the su(2) connection.
Finally, the supersymmetry transformation rules of the bosonic fields are

b€y = e, (2.14)
S Al = —DBhlgyl + inlEy, AT, (2.15)
69" = e, (2.16)
St = —ifiaNEct. (2.17)

3 KSIs and integrability conditions

The bosons’ supersymmetry transformation rules lead to the following KSIs [43, 44] asso-
ciated to the gravitino, gauginos and hyperinos resp.:

(5M”7V+§hfefu) e =0, (3.1)
(& —nl &) = 0, (3.2)
fia*Exe = 0. (3.3)



It is an implicit assumption, used to derive the KSIs, that the Bianchi identities are satis-
fied. This affects, in particular, the first two KSIs, where the vector field equations appears.
It is, therefore, useful to derive them from the integrability conditions of the KSEs, even
if the derivation requires much more work, because in this case, contrary to what happens
in N = 2,d = 4 theories [10], there is no electric-magnetic symmetry indicating in what
combination the Bianchi identities should accompany the Maxwell equations.

The integrability condition of the KSE associated to the gravitino supersymmetry trans-
formation gives

47”D[u56¢i} = {(gug - %guo 5pp) o
(3.4)
b [ (81 + Sars BY) +3 (81 + barg BY) 3 bl = 0.

To obtain this equation we need to use Egs. (B.11)-(B.13), with v = —1 as to ensure
the correct normalization of the hyperscalars’ energy-momentum tensor. It is a well-known
result that manifolds with the opposite sign of v cannot be coupled to supergravity and
here we are just recovering this result.

Acting with v* from the left, we get

&7+ L (g — Ly B)| € =0, (3.5)
which can be used to eliminate £,° from the integrability equation:
(&7 + Lh B ) 9y + €] € = 0. (3.6)
On the other hand, from the gauginos’ supersymmetry transformation rule we get

2 32’(56)\135 = [gx - hi (g[ + %CLIJ ﬁJ)} €i =0. (37)

Egs. (3.6) and (3.7) are the modifications to the two KSIs Eq. (3.1) and Eq. (3.2) that
we were seeking for.

Let us now obtain tensorial equations form the spinorial KSIs: acting with i€y, from
the left on Eq. (3.6) and taking into account the properties of the spinor bilinears discussed
in Appendix A.2, we get

f (g,w n ?hf*zsf,,p) + LBplg V=0, (3.8)

whose symmetric and antisymmetric parts give independent equations.
Doing the same on Egs. (3.7) and (3.3), we get

EVP — fRIEP = 0, (3.9)

ExVP = 0. (3.10)



Finally, acting with i€; on Eqs. (3.6), (3.7) and (3.3) from the left we get respectively

<5up+§hI*BIW) Ve LBfhlg, = 0, (3.11)
fEx—hLEL, VP = 0, (3.12)
Exf = 0. (3.13)

which can be obtained from Eqs. (3.8)-(3.10) only in the timelike f # 0 case.
Summarizing, in the timelike case, defining the unimodular timelike vector v* = V#/ f,
we have

g = —Bplg ) (3.14)
hy B = —plglr (3.15)
E, = hL& 0, (3.16)
Ex = 0, (3.17)

which imply that all the supersymmetric configurations automatically solve the equation
of motion of the hyperscalars and that, if the Maxwell equations are satisfied, then the
Einstein and scalar equations and the projections h;B! of the Bianchi identities are also
satisfied. Therefore, in the timelike case, the necessary and sufficient condition for a
supersymmetric configuration to also be a solution of the theory, is that it must solve the
Maxwell equations and the Bianchi identities. Observe that, contrary to the 4-dimensional
cases in which only one component of the Maxwell equations and Bianchi identities (the
time component) need to be checked because the rest are automatically satisfied, in this
5-dimensional case we need to check all the components of the Maxwell equations and of
the Bianchi identities.
In the null (f = 0) case, we get, renaming V* as [*

Eplt = —LBhBLI°, (3.18)
WeE, = 0, (3.19)
hLE P = 0, (3.20)
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& = 0, (3.21)

Ex = 0, (3.22)

which imply that the scalar and hyperscalars equations are automatically satisfied and so
are certain projections of the Maxwell and Einstein equations.

4 Supersymmetric configurations and solutions

In this section we will follow the procedure of Ref. [1] to obtain supersymmetric configu-
rations of supergravity, which consists in deriving equations for all the bilinears that can
be constructed from the Killing spinors. These equations contain the lion’s part of the
information contained in the KSEs and can be used to constrain the form of the bosonic
fields. These constraints are necessary conditions for the configurations to be supersym-
metric and subsequently one has to prove that they are also sufficient (or find the missing
conditions, as will happen in the null case). Finally one has to impose the equations of
motion on the supersymmetric configurations in order to have classical supersymmetric
solutions. The KSIs, derived in the previous section, simplify this task since only a small
number of equations of motion are independent for supersymmetric configurations.

As we remarked in section 2, the hyperscalars appear only implicitly in the gravitino
and gauginos supersymmetry transformations through the pullback of the su(2) connection.
The equations we are going to obtain for the fields in the supergravity and vector multiplets
are, therefore, formally identical to the case without hypermultiplets considered in Ref. [5],
but containing implicitly the su(2) connection and its consequences. This is similar to
what happens in the coupling of N = 2, d = 4 theories to hypermultiplets considered only
recently in Ref. [11]

Our goal is to find all the field configurations for which the KSEs

{D# N ﬁghl}ﬂaﬁ (Vuas — 49#@76)} ¢ =0, (4.1)
(96— 1h3 FI) e = 0, 42)
X" Pte = 0, (4.3)

admit at least one solution €/. We are going to assume its existence and we are going to
derive necessary conditions for this to happen. These conditions will arise as consistency
conditions of the equations satisfied by the tensors that can be constructed as bilinears of
the Killing spinor whose existence was assumed from the onset.

As explained in Appendix (A.2), the tensor-bilinears that can be constructed from a
symplectic-Majorana spinor are a scalar f, a vector V and three 2-forms ®". f and V are
SU (2)-singlets whereas the ®s form an SU(2)-triplet.

11



The fact that the Killing spinor satisfies Eq. (4.1) leads to the following differential
equations for the bilinears:

df = JshrivF?, (4.4)
ViV = 0, (4.5)
AV = —ZfhF' = Jh (FTAV) (4.6)
Da® sy = —Z=hiF' " (905" a0 — oo™ 370 — 59a(s™ P40 ) (4.7)
a¥ By V3 9o y]ao — Ypa Bryo 59a(8 Ypo ) .
where
Doa®" 5, = Vo @ g, + 26™A%,D'p., . (4.8)

These equations are formally identical to those obtained in Ref. [5] but now the covariant
derivative that acts on the triplet of 2-forms is an SU(2)-covariant derivative.

Egs. (4.2) and (4.3) lead to algebraic equations for the tensor bilinears: contracting
Eq. (4.2) with i€; and 0"7¢; we get

Lyo® = 0, (4.9)
hF @ = 0, (4.10)

and the contraction of Eq. (4.3) with i€, yields
£Lyg* =0. (4.11)

Contracting now Eq. (4.2) with ig;v* and 0" /€7* we get

fd¢® = —h¥iyF', (4.12)
0 = ©7,0°9" + Lepap K F 70777, (4.13)
and, finally, operating on Eq. (4.3) with &~y*

0.5 + @, 0,  J'v* =0, (4.14)

where we have identified the complex structures of the target quaternionic-Kéahler manifold,
Iy = [y 307 s (4.15)

12



Eq. (4.5) says that V' is an isometry of the space-time metric. The differential equation
of " (4.7) implies

dP” + 2e"AS A D =0, (4.16)

i.e. the three 2-forms are covariantly closed respect to the induced su(2) connection.
In order to make further progress, it is necessary to separate the timelike (f # 0) and
null (f = 0) cases.

4.1 The timelike case

4.1.1 The equations for the bilinears

In this case the Killing vector V is a timelike, V2 = f? > 0. We introduce an adapted
time coordinate t: V = 0,. With this choice of coordinates the metric can be decomposed
in the following way

ds* = f2(dt + w)® — f hyppda™dz" (4.17)

where w is a time-independent 1-form and A, is a time-independent Riemannian four-
dimensional metric.® Eqs. (4.4),(4.9) and (4.11) imply that with our choice of coordinates
the scalars f, ¢ and ¢~ are time-independent.

Following Ref. [1] we define the following decomposition

fdw =G+ G, (4.18)

where G and G~ are the selfdual and anti-selfdual parts respect to the metric h.

The Fierz identity Eq. (A.23) indicates that the ®"s have no time components and the
Fierz identity Eq. (A.24) implies that they are anti-selfdual respect to the spatial metric
h. Moreover, the identity Eq. (A.25) becomes

Q7D P = — 758, P 4 D P (4.19)

where all operations on the spatial indices refers to the spatial metric h. This is the algebra
of the imaginary unit quaternions, whence we may conclude that the spatial manifold is
endowed with an almost quaternionic structure.

The next step is to obtain the form of the supersymmetric vector fields from Eqgs. (4.4),
(4.6), (4.10) and (4.12): these equations contain no explicit contributions from the hyper-
scalars and, therefore lead to the same form of the vector fields found in Ref. [5], namely

Fl = —V3{d [fh' (dt +w)] + 0"}, (4.20)

where the ©'s are spatial selfdual 2-forms and

8 Appendix C contains a Vielbein basis and the non-vanishing components of the connection and Ricci
tensor in that basis.
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Gt =-3n0". (4.21)

From (4.7) information about the derivatives of the two-forms ®” can be extracted using
the above expression for FI: first, by introducing the spin connection of the metric given
in Appendix C we may obtain the spatial components of the five-dimensional covariant
derivative,

ngl)(l)’"nq = f3/2vmq)nq - % (5m[n8p]f3/2q)rpq - 5m[qap]f3/2q)Tpn - amf?)/QQ)an) ) (4-22)

where V,, is the covariant derivative of the four-dimensional spatial metric. On the right
hand side of this expression all of the flat indices refers to the Vielbein v,,,t. On the other
hand, the spatial components of the equation (4.7) are

V@ g+ 2f2e A, @ = = Z2 FRLFTP (8@ g = Opm® g — Oupn® ) (4.23)

where we have used the fact that ®” are spatial, anti-selfdual 2-forms. Now from Eq. (4.20)
we read

hiFIP0 = /37120, f (4.24)

and by comparing Eqs. (4.22) and (4.23) we find that the 2-forms ®" are SU(2)- and
Lorentz-covariantly constant over the 4-dimensional spatial manifold:

Vin® p + 26" A, 0, = 00D — 260 1D gy + 267A%, D, = 0, (4.25)

Here ¢ is the standard spin connection of the 4-dimensional spatial manifold.

Had the base space not been 4-dimensional, the conclusion would have been that we are
dealing with a quaternionic-Kéhler manifold. But in four dimensions the above equation,
taken at face value, is rather void: given a Vierbein we can construct a kosher quaternionic
structure by inducing the one from R* and then the unique A solving Eq. (4.25), is given
by

AL = Lot gl v, BsP (4.26)

In the case at hand, however, said arbitrariness is nothing but an illusion since the con-
nection A is the one induced from an sp(1) connection on a quaternionic-Kahler manifold
and is therefore not to be chosen but to be deduced. At this point one can then already
appreciate the interwoven nature of the problem: Since the quaternionic structure on the
4-dimensional space is basically known, Eq. (4.25) determines, part of, the spin connection
in terms of the pull-back of an sp(1) connection. This pull-back, however, is defined by
means of a harmonic map satisfying Eq. (4.14), which presupposes knowing the Vierbein,
and hence also the spin connection.
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A ‘“trivial’ solution to the requirement that the hyperscalars form a harmonic map
satisfying Eq. (4.14), is to take them to be constant: Eq. (4.25) then states that ® defines
a covariantly constant hypercomplex structure, so that the 4-dimensional manifold has
to be hyper-Kéhler, and we recover the results of [1, 5]. As is well-known the holonomy
of a 4-dimensional hyper-Kéhler space is su(2) C so(4), and in a suitable frame the spin
connection can be taken to be selfdual. The technical reason why the spin connection can be
taken to be selfdual lies in the fact that the ®s are anti-selfdual and that the split into anti-
and selfdual components corresponds to the Lie algebraic split so(4) = su(2), ®su(2)_; if
we then take the ®s to be induced from the ones on R*, called J, and denote the projection
of the spin connection onto su(2). by €%, then Eq (4.25) can be expressed as [¢,, )] = 0,
which immediately implies £~ = 0.

In the general case there will still be no constraint on £, but we can solve equation
(4.25) to give

Gnn’ = —Am - 17, (4.27)
where as above, we made use of the quaternionic structure induced from flat space.

In the above we were able to match things up without much ado, since the relevant
su(2)s both acted in the vector representation. When considering the Killing spinor equa-
tion, however, the representations do not add up that nicely, and one finds that a necessary
condition for having unbroken supersymmetry is that the generators of su(2) and su(2)_
should have identical actions on the Killing spinors, i.e.

eio’; = LUy e (4.28)

and these conditions will appear as projectors II" *;7 acting on the Killing spinors, where

I+ =1[6 £ & j0e] 7. (4.29)

In principle we only need to impose one such constraint for each non-trivial component A”.
The last constraint on the bosonic fields comes from Eq. (4.14). In the timelike case
this equation is purely spatial and in 4-dimensional notation reads

Omq™ = ®",," Onq” 'y . (4.30)

This condition implies that ¢ is what Ref. [45] calls a quaternionic map. In said reference
it is shown that a quaternionic map between hyper-Kahler manifolds implies that the map
is harmonic, 7.e. it solves

0,0 ¢~ =0. (4.31)

Here, however, we are not dealing with maps between hyper-Kahler manifolds, yet the
KSIs state that ¢ is automatically harmonic. The question then is: Apart from being
quaternionic, what properties must ¢ satisfy in order to be harmonic?

Let us be a bit more general and consider the situation in which the sp(1) connection
A appearing in Eq. (4.25) is not the pull-back of the sp(1) connection, denoted B, defined
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on the hypervariety. By then differentiating Eq. (4.30), using Eqgs. (4.25) and the formulas
in App. (B), we obtain

@maan = _9Qgstr [Asn _ an BSZ} q)tmpaqu erX
(4.32)
+07,2 D,,0,q" Iy .
Contracting the free indices, we find that
@maqu — 2857&7’ [Asm o amqZ BSZ} q)t nm@anjryX ) (433)

In our case, we have A = dq - B whence the fact that ¢ is a quaternionic map, by itself,
implies that it is harmonic.

Therefore, supersymmetric configurations of the hyperscalars consist of quaternionic
maps ¢ such that the su(2)_ connection of the 4-dimensional space manifold is canceled
by the pullback of the one on the hypervariety.

In the next section we are going to check whether the conditions that we have derived
on the fields are sufficient to have unbroken supersymmetry, i.e. identically solve the KSEs.

4.1.2 Solving the Killing spinor equations

We begin with Eq. (4.2), from the gaugino supersymmetry transformation. After use of
the expression of the vectorial fields Eq. (4.20), it can be put in the form

(2 DT — 3 @f> Reé =0, (4.34)
where we have defined the projectors R*
RF=1(1+£4"). (4.35)
Obviously, this equation can always be solved by imposing the projection

R =0, (4.36)

which is equivalent to a chirality condition on the spinors over the spatial manifold due to
the relation v° = 41234, R* and R~ have rank 2 and therefore this projection breaks/preserves
1/2 of the original supersymmetries.

Now we analyze Eq. (4.3), from the hyperinos supersymmetry transformations. Using
Eq. (4.30) we can rewrite it in the form

fXjA @QX 3612 + % Z J/(T)O-(T)ji’yo € — ’mermnaanJTYXinAR_ei = 0’ (437)

which can be solved by imposing the projection Eq. (4.36) and
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;e =0, (4.38)
where the II"%,s are the objects defined in Eq. (4.29). The ITI""; satisfy the algebra

et = Jrt 4 It — 2™ — 16 R, (4.39)

and are idempotent (and, therefore, projectors) only in the subspace of spinors satisfying
the projection Eq. (4.36).

Observe that, in principle, we need to impose the three projections r = 1,2,3 on the
Killing spinors. The above algebra shows that only two of them are independent and it is
easy to see that they preserve only 1/4 of the supersymmetries preserved by the projection
Eq. (4.36), i.e. only 1/8 of the supersymmetries is generically preserved in presence of
non-trivial hyperscalars.

We turn now to Eq. (4.1) from the gravitino supersymmetry transformation. We con-
sider separately the timelike and spacelike components of this equation. By using the spin
connection of the five-dimensional metric Egs. (C.4) and the expression of the vector fields
Eq. (4.20), the timelike component takes the form

Qe + 2 PF P —1f(1-3°) &T—if &7 R € =0, (4.40)
which is automatically solved by time-independent Killing spinors satisfying the projection
Eq. (4.36).

The space-like components of Eq. (4.1) take, after use of Eq. (4.36), the form

Vol + A5 = 0, 0= f% (4.41)

To solve this equation, the quaternionic nature of the 4-dimensional spatial manifold
comes to our rescue: in the special Vierbein basis and SU(2) gauge in which Eq. (4.27)
holds, the 2-forms ®",,,, are the constants J",,,. Using this splitting, the above equation
takes the form

Vinh 4+ i A, (07 LY ) =0, Vin' = (0m + &' (4.42)

Using the projections Eq. (4.38) for each non-vanishing component of the pull-back of the
su(2) connection A’ x0,,q~ we are left with

Vin'=0, (4.43)

which is solved by constant spinors that satisfy the projection Eq. (4.36), i.e. if they are
chiral in the 4-dimensional spaces of constant time.

It should be clear from the discussion of the gravitino variations, that, for some config-
urations, not all of the projections IT need be imposed, e.g. when turning on only an u(1)
in su(2)_. The analysis of Eq. (4.37), however, indicates that still all 3 of the projections
ought to be implemented. This is true if we disregard the possibility of a special coordinate
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dependency of the quaternionic map. As an extreme example we have the case with frozen
hyperscalars which effectively is like not having them at all. A less-trivial example to this
effect is fostered by the trivial uplift of the c-mapped cosmic string analyzed in [11, Sec.
(4.4)], in which case the map is holomorphic.”

4.1.3 Supersymmetric solutions

In Section 3 we proved that timelike supersymmetric configurations solve all the equations
of motions if they solve the Maxwell equations and Bianchi identities which we rewrite
here in differential form language for convenience:

& = —d (asF’) + 5Ok F  NFE, (4.44)

B' = ar’. (4.45)

We may evaluate these expressions for supersymmetric configurations using the for-
mula (4.20). The result is

3
& = —\/T—fZ (Vi (i) f) — 3CLx©7 - 0], (4.46)
Er = —2V3f2Ckh! (kayd® )™, (4.47)
(xB") 0 = /B2 (x4yd0")™. (4.48)

where, as usual, all the objects in the r.h.s. of the equations are written in terms of the
4-dimensional spatial metric . The components (*(4)15’[ )mn vanish identically, and it is
immediate to see that the KSI Eq. (3.15) is satisfied.

Then, the supersymmetric solutions have to satisfy only these two equations:

V%ﬁl) (hi/f) = 1Crx©7 - 0% = 0, (4.49)

de’ = o, (4.50)

which are identical to those found in Ref. [5] in absence of hypermultiplets, the difference
being the quaternionic nature of the 4-dimensional space.

9 In fact, part of Chen and Li’s article [45] consists of showing that there are quaternionic maps between
hyper-Kéhler manifolds that are not holomorphic w.r.t. some complex structure.
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4.2 Some explicit examples

In the recent paper Ref. [15] Jong, Kaya and Sezgin gave an explicit example with non-
trivial and not-obviously-holomorphic hyperscalars taking values in the symmetric space
Hy = SO(4,1)/SO(4). In this section we are going to use the same set-up to find 5-
dimensional supersymmetric solutions and discuss the possible gravitational effects.

The four coordinates of the target are denoted by ¢, X =1, ..., 4, and take the metric
on the hypervariety to be

1
:1 27 q2
- q

As one might have suspected this metric is Einstein, and since the space is conformally
flat, it is also trivially selfdual, meaning that we are really dealing with an authentic
4-dimensional quaternionic-Kéhler manifold.

A Vierbein for this metric is

gx v = Noxy, Ag?) *gr <1. (4.51)

0
oY’
In both the coordinate and the Vierbein basis the three complex structures are given by

the 't Hooft symbols p” xy (= J%y ), which are real, constant and antisymmetric matrices
in the X,Y indices. Moreover they are anti-selfdual'® and satisfy

EX = Aéxx dqx, EX = A/\_lé_)(X (452)

P'xy pPvz = —0%dxz + € plxz, (4.53)

P'xy P'wz = Oxw Oyz —dxz dyw — exywz. (4.54)
The anti-selfdual part of the spin connection is

W_XY —9 (q[XEY] _ %EXYWZqWEZ) ’ (455)

where ¢& = 6%y ¥
In order to construct the hyperscalars, we assume that also the base manifold is con-

formally flat, i.e.
B dz™dr™ = Q*da™dx™ Q= Q(z?), 2? = %™ (4.56)
and thence take the Vierbein on the base manifold to be

V= Q"™ Vi = Q716,10 . (4.57)

In this basis we can identify the complex structures of the base manifold with those of
the hypervariety

They can be seen as the three anti-selfdual combinations of generators of s0(4), i.e. the generators of
the su(2)_ subalgebra.
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I = 65T x V6 = Pl (4.58)
The anti-selfdual part of the spin connection on the base manifold is

/

Q
e = 222 (ol — Lemgry) (4.59

where 2 = 6™, =™

Now we analyze the conditions for supersymmetry on the hyperscalars ¢&. The first
condition is that they must constitute a quaternionic map, i.e. Eq. (4.30), w.r.t. the chosen
quaternionic structures. In our setting this equations takes the form

6mqi = ((5M(5ﬂ — 5@5@ — Emnyx) égqx (460)

whose symmetric and antisymmetric parts give

Omg™ = 0, (4.61)
Omn) = _%Emnpqagqy (4.62)
where ¢, = ¢™.
A solution to these equations is

¢ = ™ot (4.63)

where we have chosen a possible multiplicative constant to be unity.

The second condition on the hyperscalars states that the anti-selfdual part of the spin
connection of the base manifold must be related to the su(2) connection induced from the
target,

- = A, P, (4.64)
A = Ongdx, (4.65)
where Wx is the su(2) connection of the target. We observe that the reasoning leading
to the relation (4.64) can be applied on the target manifold as well,'!, where the involved

connections are wxy and Wx and therefore we may establish the following relation on the
target

wyy? = —3x - K7 (4.66)

By contrasting Eqs. (4.64)-(4.66) we conclude that in our settings the anti-selfdual part of
the spin connection of the base manifold is induced from the one of the hypervariety,

1 Indeed it can be applied in any four-dimensional Riemannian manifold.
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E. = Omg wy POy (4.67)

This condition is satisfied if

—_— = (4.68)
The solution to this equation is

Q=01 — 29", (4.69)

where, as above, we chose a certain multiplicative integration constant. We would like to
point out that in this case the whole spin connection on the base manifold, rather than
only its anti-selfdual part, is induced by the connection on the hypervariety.

A small investigation of the curvature invariants for the metric on the base space, shows
that the point 22 = 1 corresponds to a naked curvature singularity.

We have, thus, found the following 1/8 BPS, static, asymptotically flat, spherically
symmetric, solution with only unfrozen hyperscalars in the SO(1,4)/S0O(4) coset:

1\2/3
ds?> = dt* — (1 — —6) dx™dx™
x

(4.70)

qm = F )

which, as was said above, presents a naked singularity at 2? = 1. Since there are no
conserved charges in this system, the mo hair conjecture suggests that black-hole type
(i.e. spherically symmetric) solutions of this and similar systems will always be singular,
but a more detailed study is needed to reach a final conclusion since they may be excluded
by a mechanism like the one discussed in Ref. [46, 47]. Furthermore, a higher-dimensional
stringy interpretation of this, and similar solutions, is also needed as to interpret this
singularity correctly.

As a further example let us now consider how solutions of minimal N = 1,d = 5
SUGRA!? are deformed by the coupling to these hyperscalars. For the sake of simplicity
we consider the simplest static (© = w = 0) solution which is determined, according to
Eq. (4.49), by a single function f~! = K which is harmonic w.r.t. the metric on the base
manifold. The supersymmetric solution can be written as

2In our notation this means that n, =0, C;;; = 1 and At = 1.
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3\ /3
ds* = K?2dt? — K (1+—6> dx™dx™
x
A = —\3K'dt, (4.71)
m T
qa— = F'

If the harmonic function is chosen as to have an asymptotically flat, spherically sym-
metric solution with positive mass, the harmonic function is, with frozen hyperscalars,

Q]

Kzl—{—?,

(4.72)

and the solution is the 5-dimensional Reissner-Nordstrom black hole [48] which has an
event horizon at z = 0 that covers all singularities.

When the hyperscalars are unfrozen and we have the above base manifold, K, deter-
mined again by imposing asymptotic flatness and spherical symmetry, is given by

K:1+Q21(3323 >, (4.73)

x
where 5F) is a Gaufl hypergeometric function. It is easy to see that lim, ,. K = 1
and that oF, (%,% ; % ; x*6) /% is a real, strictly positive and monotonically decreasing

function on the interval 2% € (1,00). The real question then is: what happens at x? = 1?
Eq. [49, 15.1.20] gives a straightforward answer

MNI%GGZL 4.74
MO .

which implies that there is a naked singularity at 22 = 1.

2F1(%,§§§§1) =

4.2.1 Solutions with an additional isometry

To make contact with the families of solutions with one additional isometry found in
Refs. [1, 4] we make the following Ansatz for the 4-dimensional spacelike metric

hpmda™dx™ = H ' (dz + x)? + Hypeda"dz®, r,s =1,2,3, (4.75)

where the function H, the 3-dimensional metric 7,5, and the 1-form y = x,dz" are all
independent of the coordinate z. This Ansatz covers all 4-dimensional metrics with one
isometry. We also require all fields in the solution to be independent of z.

As we have seen, supersymmetry requires the anti-selfdual part of the spin connection
of this metric to be identical to the pullback of the su(2) connection of the hypervariety.
With the orientation €,103 = +1 and the Vierbein basis
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V:=H'Y*dz+ ), V= HY", (4.76)

where the v" is the Dreibein for the 3-dimensional metric v,,, the anti-selfdual part of the
spin connection 1-form is given by

& = LH39.H — (xdx),]V*
(4.77)
+i5rstH73/2{[atH — (*dx)t)0su — 2Hw e}V,

where hatted objects refer to the 3-dimensional metric.
Observe that the z-independence of all fields means that the pullback of the su(2)
connection has no z component. Then, the supersymmetry condition Eq. (4.27) leads to

dH = %dy, = V?H =0, (4.78)

which is a condition on the 4-dimensional metric, and

éﬂ_zs _ —%&“Stu wﬂtu — _2ASX @qx, (479)

which is a condition on the hyperscalars and the 3-dimensional metric.

Observe that the above 4-dimensional metric is a generalization of the Gibbons-Hawking
instanton metric [35]. The non-trivial 3-dimensional metric destroys the selfduality of the
connection. However, the generalized metric admits a quaternionic structure which is the
straightforward generalization of that of the Gibbons-Hawking metric [36] and is, therefore,
associated to the three hyper-Kahler 2-forms

J =VEAVT = 2™ VeEAVE (4.80)
It is trivial to check that they satisfy the quaternionic algebra since the tangent space
components of these 2-forms are identical to those of the Gibbons-Hawking metric and are
proportional to the anti-selfdual generators of SO(4). Unlike the Gibbons-Hawking case,

however, the hyper-Kahler 2-forms are not closed. Instead, a simple calculation shows that
they satisfy

dJ =@ NI =0, (4.81)

which, on account of Eq. (4.79), can be written in the form

dJ" + 2™ A A TP =0. (4.82)

Thus, the 4-dimensional metric Eq. (4.75) and hyperscalars subject to Eqgs. (4.78) and
(4.79) (plus Eq. (4.30)) are the most general ones associated to supersymmetric solu-
tions with one isometry. Using them it can be shown that the general solutions found in
Ref. [4] are formally identical, the only difference being that the 27 + 2 harmonic func-
tions K, Ly, M, H on which these solutions depend, are harmonic functions w.r.t. the
3-dimensional metric 7.
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To be explicit, in terms of these harmonic functions, the scalars, the closed selfdual
2-forms ©!, and the 1-form w take the form

hi/f = CuyxK’K®/H+ Ly,
O = [(dz+x)Nd(K'/H)+ H*d(K'/H)],
w = ws(dyp+x)+w, (4.83)
W5 = M—l—%H_ILIKI—I—H_QCUKKIK‘]KK,

*@dew = HdM — MdH + 3(K'dL; — LidK").

The function f has to be determined case by case using the constraint C; xh/h’h% =1,
but an explicit expression for symmetric spaces is given in Ref. [4]. In the n = 0 case, i.e.
only one function K° = K and one function Ly = L, it is given by

ff'=K*/H+L. (4.84)

The metric of these solutions can be cast in the form

ds®* = —k*[dz+ BJ?

-1
1 ~ 1 r s
+h! {((lefff_f%g)l/Q) (dt +2)° ~ (gt ) sda’da

}’ (4.85)
B -,

B = x+ Pusk™2(dt +d).

In this form, comparing with the results of Refs. [10, 11] it is easy to see the form of the
N = 2,d = 4 supersymmetric solution that will appear after dimensional reduction. The
metric

H! i H! B
ds? = <(f_1H_fl - f2w§)1/2) (dt +@)? — ((f_lH_fl - f%g)m) Yesdadz® . (4.86)

is that of a solution in the timelike class, to which all N = 2,d = 4 supersymmetric black
holes belong, and there is an additional scalar (k) and an additional vector field (B). If
the 5-dimensional solution is static ws = 0 and the vector field B = x is magnetic and
corresponds to a KK monopole or a generalization thereof. This fact has been used in
Refs. [21, 22, 23, 24, 25, 26, 27| to relate 4- and 5-dimensional black hole solutions.
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4.3 The null case

Denote the null Killing vector by {*. Following the same considerations as in Refs. [1, 6],
we find that we can choose null coordinates u and v such that

l,de" = fdu, "0, = 0, (4.87)

where f may depend on u but not on v, and the metric can be put in the form

ds® = 2fdu(dv + Hdu + w) — f2,dx"dz* (4.88)

where 7,5,t = 1,2,3 and the 3-dimensional spatial metric 7, may also depend on u but
not on v. Eqs. (4.9) and (4.11) state that the scalars are v-independent.

The above metric is completely equivalent to the one used in Refs. [1, 6], but we find this
form more convenient; a Vielbein, and the corresponding spin connection and curvature
for it are given in Appendix D.

In the null case the Fierz identities (A.23,A.24) and (A.25) imply that the 2-forms
bilinears ®" are of the form

Q" = du ANv", (4.89)
where the 1-forms v" are an orthogonal basis for the 3-dimensional spatial metric 7.
Eq. (4.16) then implies the equation

duNDv" =0, (4.90)
i.e. the spatial components of the pullback of the s1(2) connection are related to the spin

connection coefficients of the basis v" (computed for constant u) by

@, = 25 APy 0,q~ . (4.91)

This equation is identical to the one found in Ref. [11] in the context of ungauged N =
2,d = 4 supergravity coupled to hypermultiplets. Actually, substituting the 2-forms we
found into Eq. (4.14) we arrive at

aquinAO-Tij =Y, (492)

which is identical to the equation that the hyperscalars have to satisfy in a supersymmetric
configuration of ungauged N = 2, d = 4 supergravity [11]. Observe that the last two
equations together with Eq. (B.11) (for v = —1) imply that the Ricci scalar of the 3-
dimensional metric ~ satisfies

RTS(P)/) = _%gXYaquﬁqu- (493)
Let us now determine the vector field strengths: Eqs. (4.4,4.10) and (4.12) lead to

"F!, =0, (4.94)
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and, using the basis given in Appendix D, we can write
FI = F1+re+ ANe + %Flrser ANe’ = FIMdu Av" + %f_QFIrSvT A v, (4.95)
From Eq. (4.6) we get!?

hIFIrs == _\/ggrstatf7 at = Ut§a§- (496)
The same result can be obtained from D % ®". From Eq. (4.13) we get

h?F]rs = _grstf atﬁbm; (497)

which, together with the previous equation and the definition of hf give

FEF L = VB3EARf) s (4.98)
From the + + r components of Eq. (4.7) we get
hiF! ey = =25 fPF), (4.99)
where
F=dw. (4.100)

The components h*F!,, are not determined by supersymmetry and we parametrize

them by 1-forms ¢! satisfying h;¢! = 0. In conclusion, the vector field strengths are given
by

F' =[5 f2'%F = "] A du+ V3%d(h'/ f). (4.101)

4.3.1 Solving the Killing spinor equations

Let us continue our analysis by plugging our configuration into Eq. (4.2): using the Viel-
bein, Eq. (4.97) and some Clifford algebra manipulations, we see that

0= f 00" + Wil 4" + Lo etm’y”’y_] yret (4.102)

so, if we want the scalars ¢ and the 1! to be non-trivial, we are forced to impose y*e! = 0.

As is usual in wave-like supersymmetric solutions, the — component of the susy vari-
ation (4.1) is identically satisfied by an wv-independent spinor, and the remainder of the
components simplify greatly due to the lightlike constraint: The ones in the r-directions
reduce, after using Eqgs. (4.96,4.99), to

13Unless stated otherwise (as is the case of F7',. ) all quantities with flat spatial indices refer to the
3-dimensional metric and Dreibein basis.
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0 = fDe=17f |:ar - Allwrst’VSt + ZK&T} €
(4.103)
PO+ AP (I — (0T ] e

where in the last step we made use of Eq. (4.91). If we then introduce the projection
operators (no sum over p!)

I, =

P

(1 = (@) T2 =1, ; [I,,I,] =0, (4.104)

N —=

the above equation is solved by imposing the condition II,e = 0, for every p for which A?
does not vanish, leading to a Killing spinor that can only depend on w.

The penultimate equation that needs to be checked is the gravitino variation in the
u-direction.

0 = due + 0,004 7% + iA,-GTe = due — [AP, + lepu,td,uy] APe. (4.105)

Generically the factor v,£0,v4 is spacetime dependent, which, in order to avoid an
inconsistency with the z-independency of the Killing spinor, means that we must have

Apu = —ié‘p,,«s Uri 8uvst . (4106)

A consequence of this analysis is that the Killing spinor is constant.

Eq. (4.3) is the only one left to be analyzed. In fact it is straightforward to see that,
given the constraints obtained thus far, Eq. (4.3) is tantamount to (4.92) contracted with
€¢j. In order to get this far, however, one has to make use of all the constraints, meaning
that if we do not want even more constraints, Eq. (4.92) must hold.

4.3.2 Equations of motion

In the null case, the KSIs contain far less restrictive information than in the timelike case,
and as one can see from Egs. (3.18)-(3.22), there are more equations of motion to be
checked.

In order to get on with the show, let us analyze the gauge sector: the non-vanishing
components of the Bianchi identities are immediately found to be

Bt = VBEVE(R/S), (4.107)
FUBIT = (B PR — 0]+ VB R )] (4.108)

and the Maxwell equations take the form
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1€ = —/3du A { fhr A F o+ L [d(;w, f) = 201 5" A *d(hE f)] } . (4.109)

and satisfy the KSIs Egs. (3.19) and (3.20).
Eq. (4.107) is solved by nn = n, + 1 harmonic'* functions K*:

W/f = kb, VPK! =0, (4.110)
KT =0, which, as in the timelike case, determines f to be

fig = K[KI, K[ = C[JKKJ KK (4111)

Since the K! are harmonic, we may introduce 7 local, 3-dimensional 1-forms a! =
ol (u, ¥)dz" which satisfy

do! = %dK", (4.112)

such that each o is determined, up to a 3-dimensional gradient, in terms of K’ and +.
This gauge freedom will be relevant soon.
Egs. (4.108) become

dp' = J2d (f*h'*F) + V3da', (4.113)
where & = dé dz”. The general, local solution to this equation is
W' = L PRE +dM 4+ V3a! (4.114)
where the Ms are some functions. The constraint 4 - ¢ = 0 implies
L [PRF + hdM' +V/3ha! = 0. (4.115)

Due to the relation F' = cZw, the above is the equation that, if we manage to fix the Ms,
will determine w.
Plugging Eq. (4.114) into the Maxwell equations we see that

V2L + V3Cux [V, (K76R) +o,K7 (65) | = o, (4.116)
where we have defined the combinations

L] = C[JK KJ MK (4117)

At this point we take advantage of the gauge freedom of (4.112) in order to simplify
the Maxwell equations: fix the gauge by imposing

141n this section, harmonic means harmonic on the 3-dimensional Euclidean space with metric ~.
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Crorc Vo (K76%) + 0.K7 (%), | = 0, (4.118)

thus determining o completely in terms of the K’ and ~. In this gauge the functions L;
are harmonic,

V2L =0, (4.119)

and we determine the functions M’ in terms of the harmonic functions K’ and L; by
Eq. (4.117).

Another advantage of the above gauge is that the equation for w, Eq. (4.115), takes on
the rather nice form:

*dw = V3 (LidK' — K'dL;) — 3K;d'. (4.120)

In the analysis of the Einstein equations it is useful to perform the following change of
variables

H = -iL;M" + N. (4.121)
With this redefinition £, becomes

Eir = —fVAN 4+ f [vr(w)r +3(@) 0 log f+ 3 F () + 322 = 27 F ()

. . . 2
30k K! (KJKK 4 (67),(65), + %(aJ)TaTMK) 12/ (K,Kf>

e ] (1122)

In general there is a gauge freedom in setting the one-form w given in (4.120), corre-
sponding to shifts in the coordinate v. If we choose to fix this gauge freedom by demanding

Ve(@)r +3(@)0log f = =3f 2 @)ee — 32+ 2 D)o — 3F Pgxv i ¢
+3C kK’ (KJKK + (&), (&), + %(QJ)TE)TMK)

SN2
_12f? (KIKI> , (4.123)
then &£, vanishes identically if N is a real, harmonic function. £,, becomes

5—0—1" - _%vs(;y)rs + %87'('7)33 + %fgklarKI + %gXYarTqY ) (4124)

whereas &, is identically satisfied by the configuration as we have it.
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4.3.3 u-independent solutions

The equations that need to be solved, simplify greatly if we consider the case that the solu-
tions do not depend on the coordinate u: in that case the gauge-fixings Eqs. (4.118,4.123)
and the remaining equation of motion, Eq. (4.124), vanish identically, meaning that now
the solutions are completely determined by the hyperscalars, the 3-dimensional metric and
the 27i+1 real, harmonic functions L;, K7 and N. Given these ingredients, in order to fully
specify the solution we need calculate f, H, w and v through the following, simplified
equations.

2 = K K! ., L = CpxK’ M*,
H = <1, M + N . o — V3|LidK' — KIJLI] , (4.125)
W(g) = fK! . = PKULy;AK’ — K7dLy) +dM? .

Solutions that belong to this family, but depending on a smaller number of harmonic
functions have been given e.g. in Refs. [7, 50, 51].

Apart from being one of the nicest subclasses of solutions, the u-independent one be-
comes doubleplus interesting when we observe that if we reduce a solution in the null class
over the spacelike direction v/2y = u — v, which implies u-independence, we end up with
a solution in the timelike class of N = 2 d = 4 SUGRA. In fact, comparing the con-
straints in this section with the ones in [11, Sec. (5)], one finds the same constraints on
the hyperscalars and the 3-dimensional metric.

The metric Eq. (4.88) can be put in an y-adapted system, and one finds

L\ 1/2 ~1/2
ds? = —Kdy+ AP* + k7! [(ﬁ;) (dt + \%w)z - <1f3H> %sdxrdxs] ,
K o= (1-H)f, (4.126)
A = —(1-H) "(Hdt + Jw).

The 4-dimensional solutions can be easily read from these. Apart from the scalar k£ and
the vector field A, which is purely electric if the 5-dimensional solution is static (w = 0),
the metric takes the form

o (PN e (N
ds? = <1—H) (dt + J5w)* — (m) Vrsdx"dz®, (4.127)

and belongs to the N = 2, d = 4 timelike class to which all black-hole-type solutions belong
ind=4.
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This 4-dimensional solution should be compared to the one in Eq. (4.85), which is
the one one obtains when imposing an extra isometry on the four dimensional spacelike
manifold in the timelike case. the main difference between them is the electric or magnetic
nature of the KK vector field. In the simplest case this solutions would give a 4-dimensional
electric KK black hole and the other one a 4-dimensional magnetic KK black hole, related
by 4-dimensional electric-magnetic duality, as we discussed in the introduction. In the
more general case, the relation between these solutions is more complicated and we hope
to say more about it in the near future.

5 Conclusions

In this paper we have found new families of supersymmetric solutions with unfrozen hyper-
multiplets. These families are very general and the form and physical properties of each
solution depend on the details of the choices of hypervarieties, harmonic mappings and
harmonic functions made. This opens a new wide range of possibilites that needs to be ex-
plored. More work is need to find out what happens with black hole attractors'® and black
hole entropy when hyperscalars are unfrozen [47], to find and explain the generic features
of these solutions (are they always singular?), to find out to which stringy configurations
these solutions correspond to etc.

One of the families of solutions describes generically strings with pp-waves propagating
along it and can be dimensionally reduced to supersymmetric N = 2,d = 4 black holes.
This raises new question about how the 4-dimensional attractor mechanism is implemented
in the 5-dimensional setting, taking into account that these 5-dimensional solutions belong
to the null class and the standard attractor mechanism is proven only for solutions in the
timelike class. The 5-dimensional origin of the 4-dimensional entropy can (and must) be
investigated.

We hope to report on some of these issues in the near future.
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A Conventions

Our conventions can be obtained from those of Ref. [37] by changing the sign of the
metric (to have mostly minus signature), multiplying all v%s by +: and all ,s by —i and
setting Kk = 1/ \/5, but we collect here the main features of our conventions to use them as a
reference. In particular, Section A.3 contains the relevant Real Special Geometry identities
for k = 1/+/2 (those in Appendix C of Ref. [37] are only valid for x = 1).

A.1 Gamma matrices and spinors

We use mostly minus signature.
The first four of our 5-dimensional gamma matrices are taken to be identical to 4-
dimensional purely imaginary gamma matrices 7°,v%, 72,72 satisfying

{77} =2, (A1)
and the fifth is v* = —4"'23 so it is purely real, the above anticommutator is valid for
a=0,---,4 and, furthermore, 7% = 4+£%% and, in general

N
fyal---an — ( ) 5a1..'anblmbnisr)/bl-ubn,kg ) (A2)

(5 —mn)!

On the other hand, 7° is Hermitean and the other gammas are anti-Hermitean.
To explain our convention for symplectic-Majorana spinors, let us start by defining the
Dirac, complex and charge conjugation matrices Dy, B4, C.. By definition, they satisfy

Dy D' = +4°T, By Bt = £4*. Cin"Cit = +~°T. (A.3)
The natural choice for Dirac conjugation matrix is

D =iy°, (A.4)

which corresponds to D = D,. The other conjugation matrices are related to it by

C:=BID, (A.5)

but it can be shown that in this case only C = C, and B = B, exist and are both
antisymmetric. We take them to be

C =iy™, B=+'" =BB=-1. (A.6)
The Dirac conjugate is defined by

D = ipty, (A7)
and the Majorana conjugate by
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PpTC =it (A.8)
The Majorana condition (Dirac conjugate = Majorana conjugate) cannot be consistently

imposed because it requires B*B = +1. Therefore, we introduce the symplectic-Majorana
conjugate in pairs of spinors by using the corresponding symplectic matrix, e.g.

ic = €Z'j'¢j TC, (Ag)

then the symplectic-Majorana condition is

P =gyt (A.10)
To impose the symplectic-Majorana condition on hyperinos ¢4 the only thing we have
to do is to replace the matrix €;; by C4p, which is the invariant metric of Sp(ny).
Our conventions on SU(2) indices are intended to keep manifest the SU(2) covariance.
In SU(2), besides the preserved metric, there is the preserved tensor €;;. We also introduce
e, g1y = ' = +1. Therefore we may construct new covariant objects by using ;; and €,
for instance ¢; = €;;97 (whence 17 = 1);¢). With this notation the symplectic-Majorana
condition can be simply stated as

Y=y (A.11)

We use the bar on spinors to denote the (single) Majorana conjugate:

b=y, (A.12)
which transforms under SU(2) in the same representation as " does. We also lower its
SU(2) index: ¢; = €;;97. In terms of single Majorana conjugates the symplectic Majorana
condition reads

(") =i (A.13)
Finally, observe that after imposing the symplectic Majorana condition the following
simple relation between the single Dirac and Majorana conjugates holds:

WD = oy, (A.14)

which is very useful if one prefers to use the Dirac conjugate instead of the Majorana one.

The bilinears that can be constructed from Killing spinors will in general be 2 x 2

matrices that can be written as linear combinations of the Pauli matrices o” (# = 0,...,3)
where 0° = Iy,5. Therefore, we are bound to need the Fierz identities

(XMgp) (@NX) = ’g{(XMJfo) (@a%) + (E\M”yaafo) (&’yaafgo) )
15
—1 (AM~y*6"Nx) (vya0”0) }

where the SU(2) indices are implicit and p = (—)1 for (anti-)commuting spinors.
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A.2 Spinor bilinears

With one commuting symplectic-Majorana spinor €’ we can construct the following inde-
pendent, SU(2)-covariant bilinears:

Ei e’

€Y% :

&€l

It is easy to see that

Q’Ej = —8jk<€k6l)8li,
(A.16)

66 = —&é,
( j

The first equation implies that this matrix is proportional to ¢/ and the second
equation implies that the constant is purely imaginary. Thus, we define the SU(2)-
invariant scalar

f = ige = ieo’ , g = —% f o (A.17)
All the other scalar bilinears iéo”e (r = 1,2, 3) vanish identically.

This matrix satisfies the same properties as €/, and so we define the vector bilinear

V® = dgne = iey'oe , &y’ = —L§I Ve, (A.18)
which is also SU(2)-invariant, the other vector bilinears being automatically zero.

In this case

vl = +elt(gy®e)ey;,

(A.19)

ab i

(En™el)* = &ry™e,

which means that these 2-form matrices are traceless and Hermitean and we have
three non-vanishing real 2-forms

(I)rab = Uri] Ej"}/abEZ ’ éi")/abﬁj — %O-Tij q)rab‘ (A20)

r = 1,2,3, which transform as a vector in the adjoint representation of SU(2), and
the fourth ey*o% = 0.

Using the Fierz identities Eq. (A.15) for commuting spinors we get, among other iden-

tities,
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Va‘/a — f2 7

Va‘/b - 77abf2 + %(I)racq)rcb )

Vedr, = 0,
VAR )abe = —fPbe,
O D%y = =0 (N f? = VaV) — € [P,
PPy = — 1[0 CabcacV,
Vay'e = fe,
Pr AP = difedo’;t.

A.3 Real Special Geometry

(A.21)
(A.22)
(A.23)
(A.24)
(A.25)
(A.26)
(A.27)

(A.28)

The geometry of the n physical scalars ¢* (x = 1,...,n) of the vector multiplets is fully

determined by a constant real symmetric tensor Cryx (I, J, K = 0,1,
scalars appear through 7 functions h!(¢) constrained to satisfy

Cryxh'h/hE =1.

One defines

hi = Cryxh’h®, = hihl =1,
and a metric ay; that can be use to raise and lower the SO(7) index

h]ECL]JhJ, hIEaIJhJ.
The definition of h; allows us to find
arjy = —QO[JKhK + 3h[hJ .
Next, one defines

on’

W =—v3h' , = -3
x \/— 5 a¢x7
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(A.29)

(A.30)

(A.31)

(A.32)
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and

hIm = CL]Jhi = —’—\/gh[’x s (A34)
which satisfy

hihl =0, h'hr, =0, (A.35)
due to Eq. (A.29). The h! enjoy the following properties of closure and orthogonality

(Zi)(hf h?}):(é%),(m h?)<zg>:5{. (A.36)

Therefore any object with SO(n) index can be decomposed as
Al = (h A7) W' + (R5A7) RL. (A.37)
The metric of the scalars g,,(¢) is the pullback of a;;:

oy = arghih) = =2C chLh) b (A.38)

and can be used to raise and lower z,y indices. Other useful expressions are

ary = hrhy+hihy., (A.39)
Crixh™ = hihy — ihihy,, (A.40)
and
h[h] = %au + %C[JKhK y (A41)
h?h]w = %(l[(} - %OL}K}ZK. (A42)

We now introduce the Levi-Civita covariant derivative associated to the scalar metric
gxy

hlx;y = h[%y — nyzhjz . (A43)

It can be shown that
hlaxy = \/Lg(hlgmy + Twyzhf) ) (A-44)
hay = =50 gy + Tuyeh'?), (A.45)

36



Txyz = \/ghlx;yhiz _\/gh]xhl (A46)

Yz

I.° = h'%hp, — Tl = 8hihL , + T (A.47)

B Quaternionic-Kahler manifolds

In this appendix we review the definition and basics of quaternionic-Kéahler manifolds.
We refer the reader to Ref. [53] for a more comprehensive introduction to quaternionic
manifolds with original references.

A quaternionic-Kdhler manifold is a real 4n-dimensional manifold (n > 1) such that'

1. There exists on it a triplet of complex structures J"x¥, r =1,2,3, X, Y =1,...4n
which satisfy the algebra of imaginary unit quaternions,

Jsz _ _67“5 + 8rst Jt’ (Bl)

which is known as hypercomplex or quaternionic structure. A manifold with this
property is an almost hypercomplex of almost quaternionic manifold.

2. The hypercomplex structure is integrable, i.e. it is covariantly constant with respect
to the standard Levi-Civita connection and a non-trivial su(2) connection (i.e. with
non-vanishing curvature):

6XJ”YZ — FXYUJTUZ + FXUZJTYU + 26T8ththyZ =0, (B2)

where wx” is the su(2) connection. In this case the manifold is a quaternionic man-
ifold. (If this equation is satisfied with a trivial su(2) connection the manifold is a
hypercomplex manifold.)

3. There is a metric which is invariant under the action of the three complex structures

gxy = JO%ZI g, (no sum over 7). (B.3)
This property makes it a (quaternionic) Kéahler manifold.

The combination of the complex structures with the metric gives us the three hyper-
Kéhler 2-forms

16 Clearly, the definitions given below are just too weak to be useful when n = 1, and one defines
a 4-dimensional manifold to be quaternionic-Kéahler, iff it is Einstein and selfdual. For a supergravity
justification of this definition see e.g. [53].
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J xy =gxzJ'y7. (B.4)
They are covariantly closed respect to the su(2) connection,
dJ" + 2™ A JP=0. (B.5)

The holonomy of a quaternionic-Kéhler manifold is contained in SU(2) - Sp(2) and the
tangent space indices are split accordingly into pairs of SU(2) and Sp(n) indices ¢, j, k = 1,2
and A, B,C =1,...,2n respectively. The Vielbein is defined to be f;4* and is related to
the metric by

gxy = fx"' [P Cap e, (B.6)
where
fx™ fia = ox", fia® fx7P = 67 647, (B.7)
and C4p is the Sp(n)-invariant metric. The Vielbein also satisfies the reality condition

(fx)" = ey Cap fx'7, (B.8)

and they are covariantly constant under the combination of the Levi-Civita, su(2)- and
sp(n) connections. The Vielbein also gives us the tangent version of the complex structures.
The constant matrices —io” satisfy the algebra Eq. (B.1), and we have

JxY = X I3ma0 fisY, I = —io" 7 547 (B.9)
The spin connection can be split into its su(2) and sp(n) components as follows:
inAjB = % wXT JTZ'AjB + WXAB 5ij . (BlO)

Some useful identities are

RXYT = %V ery, (Bll)
2f[XiAfY}jA = iJ'xy o'}, (B.12)
2fx" frja = gxv 6. (B.13)

The constant v is given in terms of the dimensionality of the manifold 4n and its Ricci
scalar R by

R
v= T (B.14)
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C The d =5 conformastationary metric

In the timelike case we find the conformastationary metric Eq. (4.17 ) which we rewrite
here for convenience:

ds* = f?(dt +w)* = [ hpmda™da", w=wpde™,  mn=1,---,4. (C1)

We choose the Vielbein basis

f fwm f_l _fl/me
(6au) - ) (6Ma) = , (02)
0 f_1/2vnm 0 fl/?V@m
where
hinn = Vi’ Vi 0,4 V.2V, 4 hlﬂ = mn Wi, = Vi"wy, - (C.3)

The non-vanishing components of the spin connection in this basis are

Woom = _2amf1/2 ) Womn = Wmon = %fz (dw)mn 5 Wmnp = _fl/zfmnp - 25m[n8p]f1/2 )
(C.4)
where, from now on, all the objects in the r.h.s. of these equations refer to the 4-dimensional
metric Ay, and, in particular

(00) = ViVl (d0),,, = 2V 2V, 000 (©5)

Pq

Thee non-vanishing components of the Ricci tensor are

Ry = —V2f+ [f710f)* — if“(dw)Q,
ROm - _%f_1/2vn[f3<dw)nm] ) (06)

Ryn = fRopn — %(dw)mp(dw)np + %f_lamfanf - %5mn[v2f - f_l(af)g] )

and the Ricci scalar is given by

R=—fR+Ydw)>+V?f = 3f71(0f)". (C.7)
We define, following Ref. [1] we define the decomposition

fdw =Gt +G, (C.8)

SO
de® = fldf Ne" +GT + G . (C.9)
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Further, since in this basis V' = fe, we have

AV = 2df Ne® + f(GT+G),

(C.10)
*xdV = 2% (df Ne®)+ (Gt —G )NV .
D The null-case metric
ds® = 2fdu(dv + Hdu + w) — f2,dx"dz* rs=1,2,3. (D.1)
Orthonormal 1-form and vector basis for this metric are given by
et = fdu, €+ = f_l(ay_Hag>7
e = dv+Hdu+w, e = 0y, (D.2)
e’ = f—lvr’ € = f(vr - Wrag) )

where v" = v",dz® and v, = v,%0, are orthonormal basis 1-forms and vectors for the
3-dimensional spatial positive-definite metric 7,4

5TSUT£USQ = Mg > UtivquE = 5tq . (DS)

The non-vanishing components of the spin connection are

Wiry = arH - agwéurév Wrs+ _%f2Frs - f_za!f&“s o f_lv(ﬂiaﬁv\s)i’

Wir— = %arf =Wty = —Wrp—s Wips = %fQFrs - f_lv[rlzayvls]b
Wrst = fwrst - 267"[58t}f )
(D.4)

where all the quantities in the r.h.s. of all these equations refer to the 3-dimensional metric
and Dreibein and

JON— U}USBFLE, Frs = 20wy - (D.5)

The non-vanishing components of the Ricci tensor are
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Ryy = —fVZH — {f'F? + V50, + 30,0"f + 5. 729" ps + 317290

=373 fyredy, — 32 [02log f — 2 (dulog f)°] |

Reo = —}f*Vilog .
(D.6)
Ry, = _%Vs (f3Fsr) - %UTZ"Y&V{YQ + %U,ﬁ@z (’Yg 5'72) + %Urﬂ"yﬁaé log f
—30,0,1og f — $7*4540, log f + 50, 1og fd, log f ,
Rys = [?Rus(7) — 0,5 *V?1og f + 20, f0,f,
and the Ricci scalar is
R=—f*R(v)+2f*Vlog f — 3 (3f)* . (D.7)
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