76 research outputs found
Identification of storm surge events over the German Bight from atmospheric reanalysis and climate model data
A new procedure for the identification of storm surge situations for the
German Bight is developed and applied to reanalysis and global climate model
data. This method is based on the empirical approach for estimating storm
surge heights using information about wind speed and wind direction. Here, we
hypothesize that storm surge events are caused by high wind speeds from north-
westerly direction in combination with a large-scale wind storm event
affecting the North Sea region. The method is calibrated for ERA-40 data,
using the data from the storm surge atlas for Cuxhaven. It is shown that using
information of both wind speed and direction as well as large-scale wind storm
events improves the identification of storm surge events. To estimate possible
future changes of potential storm surge events, we apply the new
identification approach to an ensemble of three transient climate change
simulations performed with the ECHAM5/MPIOM model under A1B greenhouse gas
scenario forcing. We find an increase in the total number of potential storm
surge events of about 12 % [(2001–2100)–(1901–2000)], mainly based on changes
of moderate events. Yearly numbers of storm surge relevant events show high
interannual and decadal variability and only one of three simulations shows a
statistical significant increase in the yearly number of potential storm surge
events between 1900 and 2100. However, no changes in the maximum intensity and
duration of all potential events is determined. Extreme value statistic
analysis confirms no frequency change of the most severe events
Recommended from our members
Abstract: Esophageal Reconstruction with Supercharged Jejunal Interposition: A Reliable Intervention for Establishing Esophageal Continuity in a Pediatric Population
A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels
Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels
Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop
In 1993, Przyklenk and colleagues made the intriguing experimental observation that 'brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion' and that this effect '.... may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion'. This seminal study laid the foundation for the discovery of 'remote ischemic conditioning' (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit
Ultrastructure of chemosensory tarsal tip‐pore sensilla of Argiope spp. Audouin, 1826 (Chelicerata: Araneae: Araneidae)
Abstract
While chemical communication has been investigated intensively in vertebrates and insects, relatively little is known about the sensory world of spiders despite the fact that chemical cues play a key role in natural and sexual selection in this group. In insects, olfaction is performed with wall–pore and gustation with tip‐pore sensilla. Since spiders possess tip‐pore sensilla only, it is unclear how they accomplish olfaction. We scrutinized the ultrastructure of the trichoid tip‐pore sensilla of the orb weaving spider Argiope bruennichi—a common Palearctic species the males of which are known to be attracted by female sex pheromone. We also investigated the congener Argiope blanda. We examined whether the tip‐pore sensilla differ in ultrastructure depending on sex and their position on the tarsi of walking legs of which only the distal parts are in contact with the substrate. We hypothesized as yet undetected differences in ultrastructure that suggest gustatory versus olfactory functions. All tarsal tip‐pore sensilla of both species exhibit characters typical of contact‐chemoreceptors, such as (a) the presence of a pore at the tip of the sensillum shaft, (b) 2–22 uniciliated chemoreceptive cells with elongated and unbranched dendrites reaching up to the tip‐pore, (c) two integrated mechanoreceptive cells with short dendrites and large tubular bodies attached to the sensillum shaft's base, and (d) a socket structure with suspension fibres that render the sensillum shaft flexible. The newly found third mechanoreceptive cell attached to the proximal end of the peridendritic shaft cylinder by a small tubular body was likely overlooked in previous studies. The organization of tarsal tip‐pore sensilla did not differ depending on the position on the tarsus nor between the sexes. As no wall‐pore sensilla were detected, we discuss the probability that a single type of sensillum performs both gustation and olfaction in spiders
Recommended from our members
Absorption cross sections for gaseous ClNO 2 and Cl 2 at 298 K: Potential organic oxidant source in the marine troposphere
- …