369 research outputs found

    Energy and momentum density of thermal gluon oscillations

    Full text link
    In the exact propagator for finite temperature gluons the location of the transverse and longitudinal poles in the gluon propagator are unknown functions of wave vector: ωT(k)\omega_{T}(k) and ωL(k)\omega_{L}(k). The residues of the poles, also unknown, fix the normalization of the one gluon vector potential and thus of the field strength. The naive energy density \pol{E}\cdot\pol{D}+\pol{B}\cdot\pol{H} is not correct because of dispersion. By keeping the modulations due to the source currents the energy density is shown to be ωT/V\omega_{T}/V and ωL/V\omega_{L}/V regardless of the functional form of ωT(k)\omega_{T}(k) and ωL(k)\omega_{L}(k). The momentum density is k/Vk/V. The resulting energy-momentum tensor is not symmetric.Comment: 16 pages, RevTex, no figure

    Lifetime of quasiparticles in hot QED plasmas

    Full text link
    The calculation of the lifetime of quasiparticles in a QED plasma at high temperature remains plagued with infrared divergences, even after one has taken into account the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of very soft, unscreened, magnetic photons, whose contribution is enhanced by the thermal Bose-Einstein occupation factor. The self energy diagrams which diverge in perturbation theory contain no internal fermion loops, but an arbitrary number of internal magnetostatic photon lines. By generalizing the Bloch-Nordsieck model at finite temperature, we can resum all the singular contributions of such diagrams, and obtain the correct long time behaviour of the retarded fermion propagator in the hot QED plasma: SR(t)exp{αTtlnωpt}S_R(t)\sim \exp\{-\alpha T \, t\, \ln\omega_pt\}, where ωp=eT/3\omega_p=eT/3 is the plasma frequency and α=e2/4π\alpha=e^2/4\pi.Comment: 13 pages, LaTe

    Remote Ischemic Preconditioning Neither Improves Survival nor Reduces Myocardial or Kidney Injury in Patients Undergoing Transcatheter Aortic Valve Implantation (TAVI)

    Get PDF
    BACKGROUND: Peri-interventional myocardial injury occurs frequently during transcatheter aortic valve implantation (TAVI). We assessed the effect of remote ischemic preconditioning (RIPC) on myocardial injury, acute kidney injury (AKIN) and 6-month mortality in patients undergoing TAVI. METHODS: We performed a prospective single-center controlled trial. Sixty-six patients treated with RIPC prior to TAVI were enrolled in the study and were matched to a control group by propensity-score. RIPC was applied to the upper extremity using a conventional tourniquet. Myocardial injury was assessed using high-sensitive troponin-T (hsTnT), and kidney injury was assessed using serum creatinine levels. Data were compared with the Wilcoxon-Rank and McNemar tests. Mortality was analysed with the log-rank test. RESULTS: TAVI led to a significant rise of hsTnT across all patients (p < 0.001). No significant inter-group difference in maximum troponin release or areas-under-the-curve was detected. Medtronic CoreValve and Edwards Sapien valves showed similar peri-interventional troponin kinetics and patients receiving neither valve did benefit from RIPC. AKIN occurred in one RIPC patient and four non-RIPC patients (p = 0.250). No significant difference in 6-month mortality was observed. No adverse events related to RIPC were recorded. CONCLUSION: Our data do not show a beneficial role of RIPC in TAVI patients for cardio- or renoprotection, or improved survival

    Simple mechanics of protein machines

    No full text
    While belonging to the nanoscale, protein machines are so complex that tracing even a small fraction of their cycle requires weeks of calculations on supercomputers. Surprisingly, many aspects of their operation can be however already reproduced by using very simple mechanical models of elastic networks. The analysis suggests that, similar to other self-organized complex systems, functional collective dynamics in such proteins is effectively reduced to a low-dimensional attractive manifold

    Effective theories for real-time correlations in hot plasmas

    Full text link
    We discuss the sequence of effective theories needed to understand the qualitative, and quantitative, behavior of real-time correlators in ultra-relativistic plasmas. We analyze in detail the case where A is a gauge-invariant conserved current. This case is of interest because it includes a correlation recently measured in lattice simulations of classical, hot, SU(2)-Higgs gauge theory. We find that simple perturbation theory, free kinetic theory, linearized kinetic theory, and hydrodynamics are all needed to understand the correlation for different ranges of time. We emphasize how correlations generically have power-law decays at very large times due to non-linear couplings to long-lived hydrodynamic modes.Comment: 28 pages, Latex, uses revtex, epsf macro packages [Revised version: t -> sqrt{t} in a few typos on p. 10.

    Soft Electromagnetic Radiations From Equilibrating Quark-Gluon Plasma

    Full text link
    We evaluate the bremsstrahlung production of low mass dileptons and soft photons from equilibrating and transversely expanding quark gluon plasma which may be created in the wake of relativistic heavy ion collisions. We use initial conditions obtained from the self screened parton cascade model. We consider a boost invariant longitudinal and cylindrically symmetric transverse expansion of the parton plasma and find that for low mass dileptons (M0.3M \leq 0.3 GeV) and soft photons (pT0.5p_{T} \leq 0.5 GeV), the bremsstrahlung contribution is rather large compared to annihilation process at both RHIC and LHC energies. We also find an increase by a factor of 15-20 in the low mass dileptons and soft photons yield as one goes from RHIC to LHC energies.Comment: 8 pages, including 7 figures To appear in Phys. Rev.

    Transport Theory of Massless Fields

    Get PDF
    Using the Schwinger-Keldysh technique we discuss how to derive the transport equations for the system of massless quantum fields. We analyse the scalar field models with quartic and cubic interaction terms. In the ϕ4\phi^4 model the massive quasiparticles appear due to the self-interaction of massless bare fields. Therefore, the derivation of the transport equations strongly resembles that one of the massive fields, but the subset of diagrams which provide the quasiparticle mass has to be resummed. The kinetic equation for the finite width quasiparticles is found, where, except the mean-field and collision terms, there are terms which are absent in the standard Boltzmann equation. The structure of these terms is discussed. In the massless ϕ3\phi^3 model the massive quasiparticles do not emerge and presumably there is no transport theory corresponding to this model. It is not surprising since the ϕ3\phi^3 model is anyhow ill defined.Comment: 32 pages, no macro

    Towards synthetic molecular motors: a model elastic-network study

    Get PDF
    Protein molecular motors play a fundamental role in biological cells and development of their synthetic counterparts is a major challenge. Here, we show how a model motor system with the operation mechanism resembling that of muscle myosin can be designed at the concept level, without addressing the implementation aspects. The model is constructed as an elastic network, similar to the coarse-grained descriptions used for real proteins. We show by numerical simulations that the designed synthetic motor can operate as a deterministic or Brownian ratchet and that there is a continuous transition between such two regimes. The motor operation under external load, approaching the stall condition, is also analysed

    Damping Rates and Mean Free Paths of Soft Fermion Collective Excitations in a Hot Fermion-Gauge-Scalar Theory

    Get PDF
    We study the transport coefficients, damping rates and mean free paths of soft fermion collective excitations in a hot fermion-gauge-scalar plasma with the goal of understanding the main physical mechanisms that determine transport of chirality in scenarios of non-local electroweak baryogenesis. The focus is on identifying the different transport coefficients for the different branches of soft collective excitations of the fermion spectrum. These branches correspond to collective excitations with opposite ratios of chirality to helicity and different dispersion relations. By combining results from the hard thermal loop (HTL) resummation program with a novel mechanism of fermion damping through heavy scalar decay, we obtain a robust description of the different damping rates and mean free paths for the soft collective excitations to leading order in HTL and lowest order in the Yukawa coupling. The space-time evolution of wave packets of collective excitations unambiguously reveals the respective mean free paths. We find that whereas both the gauge and scalar contribution to the damping rates are different for the different branches, the difference of mean free paths for both branches is mainly determined by the decay of the heavy scalar into a hard fermion and a soft collective excitation. We argue that these mechanisms are robust and are therefore relevant for non-local scenarios of baryogenesis either in the Standard Model or extensions thereof.Comment: REVTeX, 19 pages, 4 eps figures, published versio

    Landau-Pomeranchuk-Migdal effect in thermal field theory

    Full text link
    In recent studies, the production rate of photons or lepton pairs by a quark gluon plasma has been found to be enhanced due to collinear singularities. This enhancement pattern is very dependent on rather strict collinearity conditions between the photon and the quark momenta. It was estimated by neglecting the collisional width of quasi-particles. In this paper, we study the modifications of this collinear enhancement when we take into account the possibility for the quarks to have a finite mean free path. Assuming a mean free path of order (g2Tln(1/g))1(g^2T\ln(1/g))^{-1}, we find that only low invariant mass photons are affected. The region where collision effects are important can be interpreted as the region where the Landau-Pomeranchuk-Migdal effect plays a role in thermal photon production by bremsstrahlung. It is found that this effect modifies the spectrum of very energetic photons as well. Based on these results and on a previous work on infrared singularities, we end this paper by a reasonable physical picture for photon production by a quark gluon plasma, that should be useful to set directions for future technical developments.Comment: 28 pages Latex document, 9 postscript figures, typos corrected, semantics cleanup, final version to appear in Phys. Rev.
    corecore