82 research outputs found

    Attenuation of hemodynamic responses to laryngoscopy and tracheal intubation: Propacetamol versus lidocaine - A randomized clinical trial

    Get PDF
    The purpose of this study is to assess the effects of propacetamol on attenuating hemodynamic responses subsequent laryngoscopy and tracheal intubation compared to lidocaine. In this randomized clinical trial, 62 patients with the American Anesthesiologists Society (ASA) class I/II who required laryngoscopy and tracheal intubation for elective surgery were assigned to receive propacetamol 2 g/I.V./infusion (group P) or lidocaine 1.5 mg/kg (group L) prior to laryngoscopy. Systolic and diastolic blood pressures (SBP, DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded at baseline, before laryngoscopy and within nine minutes after intubation. In both groups P and L, MAP increased after laryngoscopy and the changes were statistically significant (P < 0.001). There were significant changes of HR in both groups after intubation (P < 0.02), but the trend of changes was different between two groups (P < 0.001). In group L, HR increased after intubation and its change was statistically significant within 9 minutes after intubation (P < 0.001), while in group P, HR remained stable after intubation (P = 0.8). Propacetamol 2 gr one hour prior intubation attenuates heart rate responses after laryngoscopy but is not effective to prevent acute alterations in blood pressure after intubation. © 2014 Ali Kord Valeshabad et al

    Cu based patch antenna on polymer substrate for flexible wireless sensor systems applications

    Get PDF
    AbstractIn this work we designed, simulated and developed a flexible 10 GHz patch antenna using standard microsystem technology. Liquid crystal polymer (LCP) is used as substrate and Copper (Cu) as metallization thin film. LCP and Cu are best suited for high frequency applications because of their excellent electrical properties such as resistivity and dielectric constant. To protect the antenna it is passivated and encapsulated with parylene C. Parylene C was deposited at room temperature using standard Gorham system. The effect of Cu metallization and parylene C passivation on antenna indicator parameters such as resonance frequency, input reflection coefficient, bandwidth and gain are investigated. Furthermore the specific resistance of Cu lines on LCP substrates is investigated

    How much Arctic fresh water participates in the subpolar overturning circulation?

    Get PDF
    Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of fresh water enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much fresh water is mixed into the overturning circulation’s deep limb in the present day. To constrain these fresh water pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Fresh water sources are split into oceanic Polar Waters from the Arctic and surface fresh water fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv of the total 110 mSv of surface fresh water fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic fresh water outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland

    Seasonality of the Meridional Overturning Circulation in the subpolar North Atlantic

    Get PDF
    Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date

    Climate-Relevant Ocean Transport Measurements in the Atlantic and Arctic Oceans

    Get PDF
    Ocean circulation redistributes heat, freshwater, carbon, and nutrients all around the globe. Because of their importance in regulating climate, weather, extreme events, sea level, fisheries, and ecosystems, large-scale ocean currents should be monitored continuously. The Atlantic is unique as the only ocean basin where heat is, on average, transported northward in both hemispheres as part of the Atlantic Meridional Overturning Circulation (AMOC). The largely unrestricted connection with the Arctic and Southern Oceans allows ocean currents to exchange heat, freshwater, and other properties with polar latitudes

    Tactical Resource Planner for Workforce Allocation in Telecommunications

    No full text

    Vacuum pressure and gas detection with a silicon based micromechanical squeeze film sensor

    Get PDF
    AbstractIn this work a new concept for the fabrication of a silicon based micromechanical squeeze-film sensor has been developed. A thin film of a gas is trapped between the resonator structure and its fixed substrate and builds up a squeeze-film arrangement. Characteristic parameters, such as resonance frequency, quality-factor and phase-shift depend on pressure and viscosity of the trapped gas and thus can be used for sensing these gas properties. First samples with different geometries have been fabricated by using a combination of dry and wet etching of the silicon substrate. Measurement results of the squeeze effect of this micro sensor are shown and compared with theoretical simulations
    corecore