1,948 research outputs found

    Multifractality of the Feigenbaum attractor and fractional derivatives

    Full text link
    It is shown that fractional derivatives of the (integrated) invariant measure of the Feigenbaum map at the onset of chaos have power-law tails in their cumulative distributions, whose exponents can be related to the spectrum of singularities f(α)f(\alpha). This is a new way of characterizing multifractality in dynamical systems, so far applied only to multifractal random functions (Frisch and Matsumoto (J. Stat. Phys. 108:1181, 2002)). The relation between the thermodynamic approach (Vul, Sinai and Khanin (Russian Math. Surveys 39:1, 1984)) and that based on singularities of the invariant measures is also examined. The theory for fractional derivatives is developed from a heuristic point view and tested by very accurate simulations.Comment: 20 pages, 5 figures, J.Stat.Phys. in pres

    Develop and test fuel cell powered on-site integrated total energy system

    Get PDF
    Test results are presented for a 24 cell, two sq ft (4kW) stack. This stack is a precursor to a 25kW stack that is a key milestone. Results are discussed in terms of cell performance, electrolyte management, thermal management, and reactant gas manifolding. The results obtained in preliminary testing of a 50kW methanol processing subsystem are discussed. Subcontracting activities involving application analysis for fuel cell on site integrated energy systems are updated

    Fluctuating dynamics at the quasiperiodic onset of chaos, Tsallis q-statistics and Mori's q-phase thermodynamics

    Full text link
    We analyze the fluctuating dynamics at the golden-mean transition to chaos in the critical circle map and find that trajectories within the critical attractor consist of infinite sets of power laws mixed together. We elucidate this structure assisted by known renormalization group (RG) results. Next we proceed to weigh the new findings against Tsallis' entropic and Mori's thermodynamic theoretical schemes and observe behavior to a large extent richer than previously reported. We find that the sensitivity to initial conditions has the form of families of intertwined q-exponentials, of which we determine the q-indexes and the generalized Lyapunov coefficient spectra. Further, the dynamics within the critical attractor is found to consist of not one but a collection of Mori's q-phase transitions with a hierarchical structure. The value of Mori's `thermodynamic field' variable q at each transition corresponds to the same special value for the entropic index q. We discuss the relationship between the two formalisms and indicate the usefulness of the methods involved to determine the universal trajectory scaling function and/or the ocurrence and characterization of dynamical phase transitions.Comment: Resubmitted to Physical Review E. The title has been changed slightly and the abstract has been extended. There is a new subsection following the conclusions that explains the role and usefulness of the q-statistics in the problem studied. Other minor changes througout the tex

    Numerical stability of mass transfer driven by Roche lobe overflow in close binaries

    Full text link
    Numerical computation of the time evolution of the mass transfer rate in a close binary can be and, in particular, has been a computational challenge. Using a simple physical model to calculate the mass transfer rate, we show that for a simple explicit iteration scheme the mass transfer rate is numerically unstable unless the time steps are sufficiently small. In general, more sophisticated explicit algorithms do not provide any significant improvement since this instability is a direct result of time discretization. For a typical binary evolution, computation of the mass transfer rate as a smooth function of time limits the maximum tolerable time step and thereby sets the minimum total computational effort required for an evolutionary computation. By methods of ``Controlling Chaos'' it can be shown that a specific implicit iteration scheme, based on Newton's method, is the most promising solution for the problem.Comment: 6 pages, LaTeX, two eps figures, Astronomy and Astrophysics, accepte

    An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation

    Full text link
    This paper employs a powerful argument, called an algorithmic argument, to prove lower bounds of the quantum query complexity of a multiple-block ordered search problem in which, given a block number i, we are to find a location of a target keyword in an ordered list of the i-th block. Apart from much studied polynomial and adversary methods for quantum query complexity lower bounds, our argument shows that the multiple-block ordered search needs a large number of nonadaptive oracle queries on a black-box model of quantum computation that is also supplemented with advice. Our argument is also applied to the notions of computational complexity theory: quantum truth-table reducibility and quantum truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27, 200

    Distribution of repetitions of ancestors in genealogical trees

    Full text link
    We calculate the probability distribution of repetitions of ancestors in a genealogical tree for simple neutral models of a closed population with sexual reproduction and non-overlapping generations. Each ancestor at generation g in the past has a weight w which is (up to a normalization) the number of times this ancestor appears in the genealogical tree of an individual at present. The distribution P_g(w) of these weights reaches a stationary shape P_\infty(w) for large g, i.e. for a large number of generations back in the past. For small w, P_\infty(w) is a power law with a non-trivial exponent which can be computed exactly using a standard procedure of the renormalization group approach. Some extensions of the model are discussed and the effect of these variants on the shape of P_\infty(w) are analysed.Comment: 20 pages, 5 figures included, to appear in Physica

    Stochastics theory of log-periodic patterns

    Full text link
    We introduce an analytical model based on birth-death clustering processes to help understanding the empirical log-periodic corrections to power-law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastics theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of cooperative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t_{o} is derived in terms of birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge

    Bifurcations and Chaos in the Six-Dimensional Turbulence Model of Gledzer

    Full text link
    The cascade-shell model of turbulence with six real variables originated by Gledzer is studied numerically using Mathematica 5.1. Periodic, doubly-periodic and chaotic solutions and the routes to chaos via both frequency-locking and period-doubling are found by the Poincar\'e plot of the first mode v1v_1. The circle map on the torus is well approximated by the summation of several sinusoidal functions. The dependence of the rotation number on the viscosity parameter is in accordance with that of the sine-circle map. The complicated bifurcation structure and the revival of a stable periodic solution at the smaller viscosity parameter in the present model indicates that the turbulent state may be very sensitive to the Reynolds number.Comment: 19 pages, 12 figures submitted to JPS

    Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains

    Full text link
    Log-periodic amplitudes of the surface magnetization are calculated analytically for two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation from the critical point. For the other sequence, the perturbation is relevant and the critical surface magnetization is studied.Comment: 12 pages, TeX file, epsf, iopppt.tex, xref.tex which are joined. 4 postcript figure

    Efficient Triangle Counting in Large Graphs via Degree-based Vertex Partitioning

    Full text link
    The number of triangles is a computationally expensive graph statistic which is frequently used in complex network analysis (e.g., transitivity ratio), in various random graph models (e.g., exponential random graph model) and in important real world applications such as spam detection, uncovering of the hidden thematic structure of the Web and link recommendation. Counting triangles in graphs with millions and billions of edges requires algorithms which run fast, use small amount of space, provide accurate estimates of the number of triangles and preferably are parallelizable. In this paper we present an efficient triangle counting algorithm which can be adapted to the semistreaming model. The key idea of our algorithm is to combine the sampling algorithm of Tsourakakis et al. and the partitioning of the set of vertices into a high degree and a low degree subset respectively as in the Alon, Yuster and Zwick work treating each set appropriately. We obtain a running time O(m+m3/2Δlogntϵ2)O \left(m + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and an ϵ\epsilon approximation (multiplicative error), where nn is the number of vertices, mm the number of edges and Δ\Delta the maximum number of triangles an edge is contained. Furthermore, we show how this algorithm can be adapted to the semistreaming model with space usage O(m1/2logn+m3/2Δlogntϵ2)O\left(m^{1/2}\log{n} + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and a constant number of passes (three) over the graph stream. We apply our methods in various networks with several millions of edges and we obtain excellent results. Finally, we propose a random projection based method for triangle counting and provide a sufficient condition to obtain an estimate with low variance.Comment: 1) 12 pages 2) To appear in the 7th Workshop on Algorithms and Models for the Web Graph (WAW 2010
    corecore