1,160 research outputs found
Immunity to MHC class I antigen after direct DNA transfer into skeletal muscle.
Plasmid cDNA encoding the alpha-chain of either membrane-bound (pcRT.45) or secreted (pcRQ.B3) RT1Aa MHC class I Ag were transferred to Lewis (RT1(1)) rat skeletal muscle by direct injection. Rats were challenged 7 days later with an ACI (RT1a) heterotropic heart transplant, and cardiac allograft survival, RT1Aa-specific antibody levels, and frequency of ACI-specific CTL were monitored. Graft rejection was accelerated by > or = 2 days in an Ag-specific and dose-dependent manner in pcRT.45-injected rats. The pcRQ.B3-injected rats also rejected grafts more rapidly; however, graft rejection was accelerated by only 1 day, and graft infiltrates were less pronounced than in pcRT.45-injected rats. Injection of pcRT.45 resulted in an increase in ACI-specific CTL precursor frequency 3 days post-transplant, whereas there was no significant change in rats pretreated with pcRQ.B3 injection. Compared with rats injected with a control plasmid encoding firefly luciferase, transfer of pcRT.45 resulted in an increase in RT1Aa-specific IgG and IgM antibody 3 days after heart transplantation. Transfer of pcRQ.B3 resulted in a similar mean increase in RT1Aa-specific IgG and IgM antibody after transplantation, but the variability from rat to rat was greater, with some animals exhibiting strong priming, and others showing little or no priming by gene injection. Our results suggest that skeletal muscle can express either membrane-bound or secreted MHC class I Ag after gene transfer, but that the membrane-bound form is more immunogenic than the secreted form in the high responder Lewis rat. Direct DNA transfer to skeletal muscle provides a rapid and specific approach to studying immunity to allogeneic MHC Ag
Use of donor serum to prevent passive transfer of hyperacute rejection
Organ transplantation in presensitized recipients continues to be contraindicated for heart and kidney recipients due to the risk of hyperacute rejection, which has no known treatment at this time. We tested whether donor serum, which contains soluble MHC class I antigen, is able to neutralize the effect of anti-donor antibody in the recipient and prevent hyperacute or accelerated rejection. A rat model of passive immunization was used to test the role of anti-donor antibody in hyperacute rejection. Seven of 10 recipients of hyperimmune serum (HyS), derived from Lewis rats (RT1l) following 3 ACI (RT1a) skin grafts, developed hyperacute or accelerated rejection. Intravenous injection of ACI serum prior to the HyS administration prevented hyperacute rejection in all recipients tested. When third-party (Wistar-Furth, RT1u) serum was given to Lewis rats injected with HyS, hyperacute rejection was not abrogated. When examining the mechanism of this effect, a simple antibody blocking phenomenon was found to be unlikely since flow cytometry analysis showed that ACI serum needed to be present at > or = 256-fold excess compared to HyS to block anti-ACI antibody binding to RT1.Aa+cells by 50%. We tested whether the RT1.Aa class I antigen in ACI serum had other biologic properties that resulted in the prolonged graft survival. However, removal of RT1.Aa antigen from ACI serum prior to use in the passive transfer model did not abrogate the graft prolongation observed previously. These data suggest that components of donor serum other than MHC class I antigen may be useful for preventing the antibody-mediated component of hyperacute rejection
Modelling climate related performances of building wall coatings and understanding the portability of the "Kunzel" rule in different climates
How may a coating affect the hygrothermal performance of the building envelope in different climates? Years ago, Helmut Kunzel, one of the fathers of Building Physics, proposed, a simple, well-known rule, relating two characteristics of a coating: its water absorption coefficient and its vapour diffusion. The "Kunzel rule" (and the associated diagram), based on a model confirmed by field tests in the German climate, set an upper limit to both parameters and their product, became a German standard and a practice among experts, practitioners and manufacturers, in many European countries. This paper proposes the results of an analysis aiming to verify its portability in other climates and is based on an extensive simulation of the hygrothermal performances of a reference wall in six different climatic conditions
Соціокультурні аспекти розвитку системи дитячо-юнацького туризму (на прикладі Харківської обласної станції юних туристів)
Метою статті є аналіз соціокультурних аспектів сучасного розвитку системи дитячо-юнацького туризму, висвітлення досвіду роботи Харківської обласної станції юних туристів в зазначеному напрямку. Аналіз досліджень і публікацій. Дослідженню питань розвитку системи дитячо-юнацького туризм
Experimental evidence for Wigner's tunneling time
Tunneling of a particle through a potential barrier remains one of the most
remarkable quantum phenomena. Owing to advances in laser technology, electric
fields comparable to those electrons experience in atoms are readily generated
and open opportunities to dynamically investigate the process of electron
tunneling through the potential barrier formed by the superposition of both
laser and atomic fields. Attosecond-time and angstrom-space resolution of the
strong laser-field technique allow to address fundamental questions related to
tunneling, which are still open and debated: Which time is spent under the
barrier and what momentum is picked up by the particle in the meantime? In this
combined experimental and theoretical study we demonstrate that for
strong-field ionization the leading quantum mechanical Wigner treatment for the
time resolved description of tunneling is valid. We achieve a high sensitivity
on the tunneling barrier and unambiguously isolate its effects by performing a
differential study of two systems with almost identical tunneling geometry.
Moreover, working with a low frequency laser, we essentially limit the
non-adiabaticity of the process as a major source of uncertainty. The agreement
between experiment and theory implies two substantial corrections with respect
to the widely employed quasiclassical treatment: In addition to a non-vanishing
longitudinal momentum along the laser field-direction we provide clear evidence
for a non-zero tunneling time delay. This addresses also the fundamental
question how the transition occurs from the tunnel barrier to free space
classical evolution of the ejected electron.Comment: 31 pages, 15 figures including appendi
Development of a tritium permeation barrier on F82H-mod. Sheets and on MANET tubes by hot dip aluminising and subsequent heat treatment
Entwicklung von Tritiumpermeationshemmenden Schichten auf F82H-mod. Blechen und MANET Rohren nach dem Hot-Dip Aluminierverfahren mit anschließender Wärmebehandlung
In der vorliegenden Arbeit werden die Ergebnisse von tauchaluminierten Blechproben aus F82H-mod. und Rohrproben aus MANET diskutiert. Die anschließende Wärmebehandlung an den getauchten Proben (1040°C, 0.5 h / 750°C, 1 h bzw. 1075°C, 0.5 h / 750°C, 2 h) entspricht der Vergütungsvorschrift für F82H-mod. bzw. der für MANET.
Das Hot-Dip Aluminierverfahren mit anschließender Wärmebehandlung eignet sich als Beschichtungsmethode sowohl für Blechproben als auch für die Innen- und Außenbeschichtung von Rohren. Die Zusammensetzung und Dicke der hergestellten Schichten ist unabhängig vom eingesetzten Stahl. Des weiteren wird gezeigt, daß die hergestellten Aluminidschichten in Pb-17Li beständig sind, der PRF genügend hoch ist und die einzelnen Prozeßschritte mit der ITM Geometrie und der Fabrikationssequenz vereinbar sind
Nonlinear electron-phonon coupling in doped manganites
We employ time-resolved resonant x-ray diffraction to study the melting of
charge order and the associated insulator-metal transition in the doped
manganite PrCaMnO after resonant excitation of a
high-frequency infrared-active lattice mode. We find that the charge order
reduces promptly and highly nonlinearly as function of excitation fluence.
Density functional theory calculations suggest that direct anharmonic coupling
between the excited lattice mode and the electronic structure drive these
dynamics, highlighting a new avenue of nonlinear phonon control
- …