89 research outputs found

    Sphinx measurements of the 2009 solar minimum x-ray emission

    Get PDF
    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.Comment: Astrophysical Journal, in press. 14 pp, 3 figure

    An Intriguing Solar Microflare Observed with RHESSI, Hinode and TRACE

    Full text link
    Investigate particle acceleration and heating in a solar microflare. In a microflare with non-thermal emission to remarkably high energies (>50>50 keV), we investigate the hard X-rays with RHESSI imaging and spectroscopy and the resulting thermal emission seen in soft X-rays with Hinode/XRT and in EUV with TRACE. The non-thermal footpoints observed with RHESSI spatially and temporally match bright footpoint emission in soft X-rays and EUV. There is the possibility that the non-thermal spectrum extends down to 4 keV. The hard X-ray burst clearly does not follow the expected Neupert effect, with the time integrated hard X-rays not matching the soft X-ray time profile. So although this is a simple microflare with good X-ray observation coverage it does not fit the standard flare model.Comment: 4 pages, 5 figures, accepted by A&

    SphinX: The Solar Photometer in X-Rays

    Get PDF
    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed

    Surface Deposition and Imaging of Large Ag Clusters Formed in He Droplets

    Full text link
    The utility of a continuous beam of He droplets for the assembly and surface deposition of Ag clusters, ~ 300 - 6 000, is studied with transmission electron microscopy. Images of the clusters on amorphous carbon substrates obtained at short deposition times have provided for a measure of the size distribution of the metal clusters. The average sizes of the deposited clusters are in good agreement with an energy balance based estimate of Ag cluster growth in He droplets. Measurements of the deposition rate indicate that upon impact with the surface the He-embedded cluster is attached with high probability. The stability of the deposited clusters on the substrate is discussed.Comment: 24 pages, 5 figure

    STIX X-ray microflare observations during the Solar Orbiter commissioning phase

    Get PDF
    Context. The Spectrometer/Telescope for Imaging X-rays (STIX) is the hard X-ray instrument onboard Solar Orbiter designed to observe solar flares over a broad range of flare sizes. Aims. We report the first STIX observations of solar microflares recorded during the instrument commissioning phase in order to investigate the STIX performance at its detection limit. Methods. STIX uses hard X-ray imaging spectroscopy in the range between 4-150 keV to diagnose the hottest flare plasma and related nonthermal electrons. This first result paper focuses on the temporal and spectral evolution of STIX microflares occuring in the Active Region (AR) AR12765 in June 2020, and compares the STIX measurements with Earth-orbiting observatories such as the X-ray Sensor of the Geostationary Operational Environmental Satellite (GOES/XRS), the Atmospheric Imaging Assembly of the Solar Dynamics Observatory, and the X-ray Telescope of the Hinode mission. Results. For the observed microflares of the GOES A and B class, the STIX peak time at lowest energies is located in the impulsive phase of the flares, well before the GOES peak time. Such a behavior can either be explained by the higher sensitivity of STIX to higher temperatures compared to GOES, or due to the existence of a nonthermal component reaching down to low energies. The interpretation is inconclusive due to limited counting statistics for all but the largest flare in our sample. For this largest flare, the low-energy peak time is clearly due to thermal emission, and the nonthermal component seen at higher energies occurs even earlier. This suggests that the classic thermal explanation might also be favored for the majority of the smaller flares. In combination with EUV and soft X-ray observations, STIX corroborates earlier findings that an isothermal assumption is of limited validity. Future diagnostic efforts should focus on multi-wavelength studies to derive differential emission measure distributions over a wide range of temperatures to accurately describe the energetics of solar flares. Conclusions. Commissioning observations confirm that STIX is working as designed. As a rule of thumb, STIX detects flares as small as the GOES A class. For flares above the GOES B class, detailed spectral and imaging analyses can be performed

    Circulating sCD14 Is Associated with Virological Response to Pegylated-Interferon-Alpha/Ribavirin Treatment in HIV/HCV Co-Infected Patients

    Get PDF
    Microbial translocation (MT) through the gut accounts for immune activation and CD4+ loss in HIV and may influence HCV disease progression in HIV/HCV co-infection. We asked whether increased MT and immune activation may hamper anti-HCV response in HIV/HCV patients.98 HIV/HCV patients who received pegylated-alpha-interferon (peg-INF-alpha)/ribavirin were retrospectively analyzed. Baseline MT (lipopolysaccharide, LPS), host response to MT (sCD14), CD38+HLA-DR+CD4+/CD8+, HCV genotype, severity of liver disease were assessed according to Early Virological Response (EVR: HCV-RNA <50 IU/mL at week 12 of therapy or ≥2 log(10) reduction from baseline after 12 weeks of therapy) and Sustained Virological Response (SVR: HCV-RNA <50 IU/mL 24 weeks after end of therapy). Mann-Whitney/Chi-square test and Pearson's correlation were used. Multivariable regression was performed to determine factors associated with EVR/SVR.71 patients displayed EVR; 41 SVR. Patients with HCV genotypes 1-4 and cirrhosis presented a trend to higher sCD14, compared to patients with genotypes 2-3 (p = 0.053) and no cirrhosis (p = 0.052). EVR and SVR patients showed lower levels of circulating sCD14 (p = 0.0001, p = 0.026, respectively), but similar T-cell activation compared to Non-EVR (Null Responders, NR) and Non-SVR (N-SVR) subjects. sCD14 resulted the main predictive factor of EVR (0.145 for each sCD14 unit more, 95%CI 0.031-0.688, p = 0.015). SVR was associated only with HCV genotypes 2-3 (AOR 0.022 for genotypes 1-4 vs 2-3, 95%CI 0.001-0.469, p = 0.014).In HIV/HCV patients sCD14 correlates with the severity of liver disease and predicts early response to peg-INF-alpha/ribavirin, suggesting MT-driven immune activation as pathway of HIV/HCV co-infection and response to therapy

    How Well Do the Generic Multi-attribute Utility Instruments Incorporate Patient and Public Views Into Their Descriptive Systems?

    Get PDF
    Multi-attribute utility instruments (MAUIs) are increasingly being used to generate utility data, which can be used to calculate quality-adjusted life-years (QALYs). These QALY data can then be incorporated into a cost-utility analysis as part of an economic evaluation, to inform health care resource allocation decisions. Many health care decision-making bodies around the world, such as the National Institute for Health and Care Excellence, require the use of generic MAUIs. Recently, there has been a call for greater input of patients into the development of patient-reported outcome measures, and this is now actively encouraged. By incorporating the views of patients, greater validity of an instrument is expected and it is more likely that patients will be able to self-complete the instrument, which is the ideal when obtaining information about a patient's health-related quality of life. This paper examines the stages of MAUI development and the scope for patient and/or public involvement at each stage. The paper then reviews how much the main generic MAUIs have incorporated the views of patients/the public into the development of their descriptive systems at each of these stages, and the implications of this. The review finds that the majority of MAUIs had very little input from patients/the public. Instead, existing literature and/or the views of experts were used. If we wish to incorporate patient/public views into future development of MAUIs, qualitative methods are recommended
    corecore