208 research outputs found

    Outcomes in Dutch DPP6 risk haplotype for familial idiopathic ventricular fibrillation:a focused update

    Get PDF
    Background: The genetic risk haplotype DPP6 has been linked to familial idiopathic ventricular fibrillation (IVF), but the associated long-term outcomes are unknown. Methods: DPP6 risk haplotype-positive family members (DPP6 cases) and their risk haplotype-negative relatives (DPP6 controls) were included. Clinical follow-up data were collected through March 2023. Implantable cardioverter-defibrillator (ICD) indication was divided in primary or secondary prevention. Cumulative survival and event rates were calculated. Results: We included 327 DPP6 cases and 315 DPP6 controls. Median follow-up time was 9 years (interquartile range: 4–12). Of the DPP6 cases, 129 (39%) reached the composite endpoint of appropriate ICD shock, sudden cardiac arrest or death, at a median age of 45 years (range: 15–97). Median overall survival was 83 years and 87 years for DPP6 cases and DPP6 controls, respectively (p &lt; 0.001). In DPP6 cases, median overall survival was shorter for males (74 years) than females (85 years) (p &lt; 0.001). Of the DPP6 cases, 97 (30%) died, at a median age of 50 years. With a prophylactic ICD implantation advise based on risk haplotype, sex and age, 137 (42%) of DPP6 cases received an ICD, for primary prevention (n = 109) or secondary prevention (n = 28). In the primary prevention subgroup, 10 patients experienced a total of 34 appropriate ICD shocks, and there were no deaths during follow-up. DPP6 cases with a secondary prevention ICD experienced a total of 231 appropriate ICD shocks.Conclusion: Patients with the DPP6 risk haplotype, particularly males, are at an increased risk of IVF and sudden cardiac death. Using a risk stratification approach based on risk haplotype, sex and age, a substantial proportion of patients with a primary prevention ICD experienced appropriate ICD shocks, showing the benefit of prophylactic ICD implantation with this strategy.</p

    The genetic basis of apparently idiopathic ventricular fibrillation:A retrospective overview

    Get PDF
    Aims: During the diagnostic work-up of patients with idiopathic ventricular fibrillation (VF), next-generation sequencing panels can be considered to identify genotypes associated with arrhythmias. However, consensus for gene panel testing is still lacking, and variants of uncertain significance (VUS) are often identified. The aim of this study was to evaluate genetic testing and its results in idiopathic VF patients. Methods and results: We investigated 419 patients with available medical records from the Dutch Idiopathic VF Registry. Genetic testing was performed in 379 (91%) patients [median age at event 39 years (27-51), 60% male]. Single-gene testing was performed in 87 patients (23%) and was initiated more often in patients with idiopathic VF before 2010. Panel testing was performed in 292 patients (77%). The majority of causal (likely) pathogenic variants (LP/P, n = 56, 15%) entailed the DPP6 risk haplotype (n = 39, 70%). Moreover, 10 LP/P variants were found in cardiomyopathy genes (FLNC, MYL2, MYH7, PLN (two), TTN (four), RBM20), and 7 LP/P variants were identified in genes associated with cardiac arrhythmias (KCNQ1, SCN5A (2), RYR2 (four)). For eight patients (2%), identification of an LP/P variant resulted in a change of diagnosis. In 113 patients (30%), a VUS was identified. Broad panel testing resulted in a higher incidence of VUS in comparison to single-gene testing (38% vs. 3%, P &lt; 0.001). Conclusion: Almost all patients from the registry underwent, albeit not broad, genetic testing. The genetic yield of causal LP/P variants in idiopathic VF patients is 5%, increasing to 15% when including DPP6. In specific cases, the LP/P variant is the underlying diagnosis. A gene panel specifically for idiopathic VF patients is proposed.</p

    Antibody-free magnetic cell sorting of genetically modified primary human CD4+ T cells by one-step streptavidin affinity purification.

    Get PDF
    Existing methods for phenotypic selection of genetically modified mammalian cells suffer disadvantages of time, cost and scalability and, where antibodies are used to bind exogenous cell surface markers for magnetic selection, typically yield cells coated with antibody-antigen complexes and beads. To overcome these limitations we have developed a method termed Antibody-Free Magnetic Cell Sorting in which the 38 amino acid Streptavidin Binding Peptide (SBP) is displayed at the cell surface by the truncated Low Affinity Nerve Growth Receptor (LNGFRF) and used as an affinity tag for one-step selection with streptavidin-conjugated magnetic beads. Cells are released through competition with the naturally occurring vitamin biotin, free of either beads or antibody-antigen complexes and ready for culture or use in downstream applications. Antibody-Free Magnetic Cell Sorting is a rapid, cost-effective, scalable method of magnetic selection applicable to either viral transduction or transient transfection of cell lines or primary cells. We have optimised the system for enrichment of primary human CD4+ T cells expressing shRNAs and exogenous genes of interest to purities of >99%, and used it to isolate cells following Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing

    Bioreactors as engineering support to treat cardiac muscle and vascular disease

    Get PDF
    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements

    New live screening of plant-nematode interactions in the rhizosphere

    Get PDF
    Abstract Free living nematodes (FLN) are microscopic worms found in all soils. While many FLN species are beneficial to crops, some species cause significant damage by feeding on roots and vectoring viruses. With the planned legislative removal of traditionally used chemical treatments, identification of new ways to manage FLN populations has become a high priority. For this, more powerful screening systems are required to rapidly assess threats to crops and identify treatments efficiently. Here, we have developed new live assays for testing nematode responses to treatment by combining transparent soil microcosms, a new light sheet imaging technique termed Biospeckle Selective Plane Illumination Microscopy (BSPIM) for fast nematode detection, and Confocal Laser Scanning Microscopy for high resolution imaging. We show that BSPIM increased signal to noise ratios by up to 60 fold and allowed the automatic detection of FLN in transparent soil samples of 1.5 mL. Growing plant root systems were rapidly scanned for nematode abundance and activity, and FLN feeding behaviour and responses to chemical compounds observed in soil-like conditions. This approach could be used for direct monitoring of FLN activity either to develop new compounds that target economically damaging herbivorous nematodes or ensuring that beneficial species are not negatively impacted

    HIV-1 Vpu Neutralizes the Antiviral Factor Tetherin/BST-2 by Binding It and Directing Its Beta-TrCP2-Dependent Degradation

    Get PDF
    Host cells impose a broad range of obstacles to the replication of retroviruses. Tetherin (also known as CD317, BST-2 or HM1.24) impedes viral release by retaining newly budded HIV-1 virions on the surface of cells. HIV-1 Vpu efficiently counteracts this restriction. Here, we show that HIV-1 Vpu induces the depletion of tetherin from cells. We demonstrate that this phenomenon correlates with the ability of Vpu to counteract the antiviral activity of both overexpressed and interferon-induced endogenous tetherin. In addition, we show that Vpu co-immunoprecipitates with tetherin and β-TrCP in a tri-molecular complex. This interaction leads to Vpu-mediated proteasomal degradation of tetherin in a β-TrCP2-dependent manner. Accordingly, in conditions where Vpu-β-TrCP2-tetherin interplay was not operative, including cells stably knocked down for β-TrCP2 expression or cells expressing a dominant negative form of β-TrCP, the ability of Vpu to antagonize the antiviral activity of tetherin was severely impaired. Nevertheless, tetherin degradation did not account for the totality of Vpu-mediated counteraction against the antiviral factor, as binding of Vpu to tetherin was sufficient for a partial relief of the restriction. Finally, we show that the mechanism used by Vpu to induce tetherin depletion implicates the cellular ER-associated degradation (ERAD) pathway, which mediates the dislocation of ER membrane proteins into the cytosol for subsequent proteasomal degradation. In conclusion, we show that Vpu interacts with tetherin to direct its β-TrCP2-dependent proteasomal degradation, thereby alleviating the blockade to the release of infectious virions. Identification of tetherin binding to Vpu provides a potential novel target for the development of drugs aimed at inhibiting HIV-1 replication

    Exploitation of Herpesvirus Immune Evasion Strategies to Modify the Immunogenicity of Human Mesenchymal Stem Cell Transplants

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable

    Enhanced Proliferation of Monolayer Cultures of Embryonic Stem (ES) Cell-Derived Cardiomyocytes Following Acute Loss of Retinoblastoma

    Get PDF
    Background: Cardiomyocyte (CM) cell cycle analysis has been impeded because of a reliance on primary neonatal cultures of poorly proliferating cells or chronic transgenic animal models with innate compensatory mechanisms. Methodology/Principal Findings: We describe an in vitro model consisting of monolayer cultures of highly proliferative embryonic stem (ES) cell-derived CM. Following induction with ascorbate and selection with puromycin, early CM cultures are.98 % pure, and at least 85 % of the cells actively proliferate. During the proliferative stage, cells express high levels of E2F3a, B-Myb and phosphorylated forms of retinoblastoma (Rb), but with continued cultivation, cells stop dividing and mature functionally. This developmental transition is characterized by a switch from slow skeletal to cardiac TnI, an increase in binucleation, cardiac calsequestrin and hypophosphorylated Rb, a decrease in E2F3, B-Myb and atrial natriuretic factor, and the establishment of a more negative resting membrane potential. Although previous publications suggested that Rb was not necessary for cell cycle control in heart, we find following acute knockdown of Rb that this factor actively regulates progression through the G1 checkpoint and that its loss promotes proliferation at the expense of CM maturation. Conclusions/Significance: We have established a unique model system for studying cardiac cell cycle progression, and show in contrast to previous reports that Rb actively regulates both cell cycle progression through the G1 checkpoint an

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans
    • …
    corecore