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ABSTRACT
Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The
inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the
limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue
engineering to become an effective clinical strategy for injured heart and vessels. For the effective
production of organized and functional cardiovascular engineered constructs in vitro, a suitable
dynamic environment is essential, and can be achieved and maintained within bioreactors.
Bioreactors are technological devices that, while monitoring and controlling the culture
environment and stimulating the construct, attempt to mimic the physiological milieu. In this
study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue
engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for
investigating the mechanisms influencing cardiovascular tissue development, and for eventually
generating suitable cardiovascular tissue replacements.

Keywords: cardiovascular tissue engineering, heart, blood vessels, physiological stimuli,
bioreactor

1. INTRODUCTION
Heart disease is the leading cause of morbidity and mortality in the Western World
[1, 2], claiming 7.25 million deaths every year, with an increasing trend destined to rise
up to about 23.6 million in 2030 [3]. This scenario greatly motivates research into
effective therapeutic interventions, since complete native regeneration is unlikely for
fully differentiated, load-bearing cardiovascular tissues as myocardium and blood
vessels. After myocardial infarction, for example, native cardiomyocytes cannot
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compensate cell loss since they are terminally differentiated cells with no proliferative
capacity [4, 5], and the myocardial tissue, poor in muscle stem cells (SCs) [6], lacks
significant intrinsic regenerative capability [7]. As a consequence, a marked
inflammatory response develops in parallel to a dramatic decrease in nutrients and
oxygen supply, leading in short time to scar formation. Scar tissue heavily affects
contractility as well as mechanical and electrical properties of native heart muscle,
leading to ventricle wall remodeling, and ultimately to heart failure [8, 9]. In patients
undergoing end-stage heart failure, heart transplantation becomes a life-saving measure
when medical treatments (and less drastic surgical interventions) have failed. However,
due to the increasing number of patients and the shortage of available donors, the
implantation of left ventricular assist devices (LVADs) has become a clinical reality as
an alternative form of treatment [10]. Concerning vascular disease, therapies applied in
the clinical practice include the transplantation of native autologous grafts, as the
saphenous vein or the internal mammary artery [11, 12], the implantation of artificial
grafts [12] or the insertion of stents [13].

However, current therapeutic cardiovascular strategies suffer from limitations. The
principal contraindications in using autologous grafts are identified in donor site
morbidity, limited availability, risk of infection, and secondary surgical wounds [12, 14].
In case of donor grafts, the disadvantages are the shortage of available donors, the risk
of pathogen transfer and rejection, and mandatory lifelong immunosuppressive
therapies. Finally, the use of artificial prostheses or devices implies limited durability,
inability to completely restore natural functions [15], and often leads to the
establishment of unphysiological conditions with the need of lifelong anticoagulation
therapies [12, 16, 17, 18].

Therefore, the innovative field of Tissue Engineering (TE), aiming to completely
regenerate three-dimensional (3D) damaged tissues or organs, could represent an
effective alternative to overcome the current clinical limitations. Attempts to in vivo
stimulate the regeneration of injured tissues were pursued on animal models by: (1)
injection of differentiated cells or SCs in situ [19, 20]; (2) mobilization of endogenous
SCs with cytokines [21]; (3) activation of cardiomyocyte cell cycle [22, 23] obtained,
e.g., by inducing permanent coronary artery occlusion [24] or performing apical
ventricular resection [25, 26]; and (4) implantation of unseeded matrices. However, the
application of these strategies is still limited since both providing cells with the
fundamental signaling without resorting to structural supports and inducing cellular
migration into unseeded implanted matrices are challenging issues [27]. The
complexity of the scenario is augmented by the fact that mammalian hearts have a
regenerative potential only for a brief period after birth, that is lost during development
[25]. On the contrary, in vitro tissue development was proven to be more effective and
adaptive, with its three main components, i.e., cells, scaffolds and culture environment,
that can be used individually or in combination [28]: (1) cells synthesize the new tissue;
(2) scaffolds provide physical support to cells and a structural and biochemical cue
tailored to promote cell adhesion, migration, proliferation and differentiation (e.g.,
allowing the application of physical stimuli on the engineered construct); (3)
biomimetic in vitro culture environments, designed to replicate the in vivo milieu by
using biologically inspired requirements, influence and drive cells to differentiate
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towards the desired phenotype and to express their functions, promoting extracellular
matrix (ECM) formation and tissue maturation [29, 30].

Due to the structural and functional complexity of cardiac and vascular tissues,
successful strategies for in vitro generation of 3D organized cardiovascular substitutes
require in-depth investigations on tissue developmental aspects and adequate
biochemical, mechanical and/or electrical stimulations [31, 32]. In this scenario,
dynamic culture devices (bioreactors), designed for providing native-like culture
environments for the development of 3D biological and biochemical processes under
monitored, tightly controlled and automated environmental and operating conditions
[33, 34], have become essential tools in cardiovascular research. In detail, the use of
bioreactors allows (1) to monitor and control the physicochemical environment, (2) to
provide a wide range of physical stimuli and, eventually, (3) to adapt culture conditions
to tissue maturation, thus improving the morphological and functional properties of the
engineered constructs [27, 35, 36, 37, 38]. Therefore, bioreactors are widely used as
model systems to investigate in vitro tissue maturation and the effects of mass transport
and biophysical and chemical stimuli on tissue formation. Once optimal culture
conditions have been identified, bioreactors can be used as production systems for in
vitro generation of engineered functional tissues. In recent years several studies have
shown that the use of bioreactors in industrial processes for TE is sustainable both
clinically and economically [39, 40, 41, 42], demonstrating that the use of closed,
standardized, and automated systems guarantees more reproducibility and lower
contamination risk than production processes carried out manually [43, 44, 45, 46].
Moreover, bioreactors, in combination with recent induced pluripotent SC technology,
have been used for producing in vitro models of disease [47, 48].

This review aims to provide an up-to-date overview of bioreactors used as
engineering support in cardiovascular TE, with particular focus on the use of
bioreactors (1) to investigate the still unknown mechanisms of cardiovascular tissue
development and the role of specific biophysical stimuli, and (2) to produce
cardiovascular engineered tissues to be implanted in animal models. Particular
emphasis is given on technological solutions for delivering physical stimuli that mimic
the physiological environment. After discussing the key properties and stimuli of native
cardiac and vascular tissues, that should be considered in the design of advanced
bioreactors for the generation of human engineered cardiovascular substitutes, the state
of the art of bioreactors for in vitro investigation and generation of cardiac and vascular
tissues is reviewed. Furthermore, works are discussed focusing on specific stimulation
requirements for effective bioreactors, pointing out future challenges in development of
next generation bioreactors for clinical use, and advantages of adopting bioreactors in
clinical strategies.

2. METHODS OF SEARCH
To carry out an exhaustive and complete review of the state of the art of bioreactors for
cardiovascular TE, two different search methods have been adopted: (1) a PubMed
search to identify related papers and books published from 1957 to 2012, using the
following keywords: heart disease, cardiovascular TE, bioreactors, heart, blood vessels,
cardiac patch, vascular graft, electrical stimulation, mechanical stimulation, perfusion,
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physiological stimuli; (2) a constant and thorough analysis of the state of the art,
including the most recent knowledge acquired from courses and congresses pertaining
to TE research.

3. PROPERTIES AND STIMULI OF CARDIOVASCULAR TISSUES
To investigate and guide in vitro cellular growth and differentiation, and functional
tissue organization, it is fundamental to design biologically inspired environments that
mimic physiological conditions, since cells and tissues correctly grow and mature if
they are subjected to physical stimuli similar to the physiological ones [27, 37, 38, 39,
40]. In fact, cells respond to the entire context of their environment (molecules, other
cells, matrix, physical forces, etc.) and it has been widely demonstrated that specific 3D
dynamic culture conditions enhance size, cellular homogeneity, molecular composition,
and functionality of the engineered constructs, in comparison with conventional static
cultures on flat surfaces.

332 Bioreactors as Engineering Support to Treat Cardiac Muscle and
Vascular Disease

Table 1. Properties and stimuli of human cardiovascular tissues

Property/stimulus Heart Blood vessels

Internal diameter Left ventricle: 3.3-7.5 cm [49] Large arteries: 4-5 mm [50]
Capillaries: 3.5-10 µm [50] 

Wall thickness Left ventricle: 8-15 mm [43] Large arteries: 1 mm [50]
Right ventricle: 4-5 mm [43] Capillaries: 0.5-1 µm [50]

Length – Large arteries: 1.4-2.8 cm [50]
Capillaries: 0.5-1.1 mm [50]

Volume Left ventricle: 40-130 ml [43,51] –
Right ventricle: 24-86.5 ml [52]

Resting rate 60-100 bpm (1-1.7 Hz) [50,53] –
Young’s Modulus 0.2-0.5 MPa (end diastolic 0.2-1.4 MPa [12]

value) [8]
Pressure Left ventricle: 10-120 mmHg [43] Large Arteries: 80-120 mmHg [54,55]

Right ventricle: 5-30 mmHg [50] Capillaries: 30 mmHg [50]
Burst pressure – 1600-3200 mmHg [55]
Flow rate – Large Arteries: 115 ml/min [54]

Capillaries: 5 · 10-4 ml/min [56]
Shear stress – Venous system: 1-6 dyne/cm2 [57]

Arterial system: 10-70 dyne/cm2 [57]
Mechanical load 50 kPa [43] –
Strain Longitudinal: 22.9% [58] Circumferential: 10-15% [43]

Radial: 59.2% [58] Longitudinal: 40-65% [59] 
Electrical field 0.1-10 V/cm [60] –
Electrical pulse 1-2 ms [60] –
duration
bpm: beats per minute



In order to provide design criteria for advanced bioreactors for an effective
generation of human implantable functional engineered constructs, that still remains
one of the major challenges in cardiovascular TE research, the structural and functional
properties of human native heart and blood vessels and the measured physical stimuli
acting on them are summarized in Sections 3.1 and 3.2. Moreover, since the majority of
the state-of-the-art studies use animal model cells in combination with bioreactor
environment to generate engineered constructs to be used as in vitro model systems,
physiological stimuli typical of the adopted animal models are summarized at the end
of each section.

3.1. The Heart
The mammalian heart is a dynamic electromechanical system where the myocardial
tissue undergoes mechanical stretch during diastole and active contraction during
systole, consuming large amounts of oxygen. The bulk of the heart tissue is the
contractile myocardium, a structure with asymmetrical and helical architecture [61, 62],
composed of tightly packed rod-shaped myocytes (forming myofibers) and fibroblasts,
with dense supporting vasculature and collagen-based ECM. Cardiac myocytes are
highly metabolically active; therefore oxygen and nutrients are depleted within a
relatively thin layer of viable tissue [63]. Native myocardium obviates this difficulty
through a rich vasculature pervading the cardiac muscle.

The physiological stimuli that affect the entire cardiac system submit it to continuous
stresses that require an enormous strength, flexibility and durability of the structures, as
well as a high degree of adaptive capacity to cope with changes due to growth, physical
activity and pathological conditions [43]. In details, in the normal human heart during
one cardiac cycle, the left ventricular pressure ranges between 10 and 120 mmHg, and
the cavity volume varies between 40 and 130 ml [43,51], respectively. The right ventricle
pressure ranges between 5 to 30 mmHg [50], and the cavity volume changes from 24 to
86.5 ml [52]. Local mechanical loads can reach 50 kPa [43], with 22.9% longitudinal and
59.2% radial mean strain [58]. Active contraction forces of myocardial strips isolated
from native human ventricles were found to range between 14.5 ± 4.4 and 22.8 ± 1.4
mN/mm2 for healthy donors [64, 65]. End diastolic values for the Young’s modulus have
been reported to range between 0.2 and 0.5 MPa [8]; however, exhaustive quantitative
measures of the mechanical properties of human heart are still an open challenge.

With regard to the electrical properties, tissue in general is surrounded by
extracellular fluid with relatively high electrical conductivity (3-12 mS/cm) [66]. For
vertebrates, the physiologically significant range of endogenously produced electrical
field strengths is 0.1-10 V/cm [60]. The electrical stimuli present in the heart can be
classified as: (1) direct current (DC) signals, which affect and direct cell migration
during the development of the cardiac primitive streak and left-right asymmetry; and
(2) the pulsatile signals implicated in the development of the cardiac syncytium [67]. In
terms of frequency, the typical resting heart rate in adults is 60-100 beats per minute
(bpm) that corresponds to 1-1.7 Hz [50,53]. In terms of pulse duration, 1-2 ms is
sufficiently long to excite heart tissue cells [60].
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Regarding animal models, the use of rats dominates in cardiac TE research due to
their low cost, ease of handling and cell isolation procedures, and ability to maintain rat
cardiomyocytes growing and beating for long periods in vitro (at least two weeks).
Moreover, cell cultures of neonatal rat cardiomyocytes are a well characterized standard
model, due to the genetic information available in much greater detail in rat than in
many other species [68]. Concerning physiological stimuli present in rat heart, systolic
pressure ranges between 100 and 120 mmHg, diastolic pressure ranges between 70 and
80 mmHg, and beat frequency ranges between 5-7 Hz for an intact rat adult heart [69]
and 4-6 Hz for a neonatal rat heart [70, 71].

3.2. Blood Vessels
Blood vessels form a branched system of arteries, capillaries and veins with different
sizes, biochemical and cellular contents, mechanical properties, and ultra-structural
organizations depending on their locations and specific functions [45]. They are
composed of different concentric layers: (1) tunica intima, the inner layer, consisting
of endothelial cells (ECs) lining the lumen and supported by a connective tissue bed;
(2) tunica media, the middle layer, consisting of circumferentially arranged layers of
smooth muscle cells (SMCs) alternated with elastin sheets; and (3) tunica adventitia,
the outer layer, composed of collagen fibers, that anchors the vessel to its surroundings
[43, 45, 72].

In the human body, the size of blood vessels varies enormously. In large arteries, the
internal diameter (ID) ranges from 4 to 5 mm and the length from 1.4 to 2.8 cm, while
in capillaries, the ID varies from 3.5 to 10 µm, and the length from 0.5 to 1.1 mm [50].
Wall thickness varies from 0.3 to 1 mm, being largest in the large arteries, much less in
veins of comparable diameter, and only a single cell thick in the capillaries, i.e., 0.5-1
µm [50]. Coronary arteries typically have a diameter of 3-4 mm and a wall thickness of
1 mm [43].

The major vessels are perfused by pulsatile blood flow and expand each time the
heart contracts, and then recoil elastically while the heart is refilling, continuously
providing blood to the small peripheral vessels and capillary beds. Blood pressure in
large arteries typically varies from 120 (systole) to 80 (diastole) mmHg, with an
average flow rate of 115 ml/min [54,55]. In capillaries, the pulsatility is lost and
pressure is only about 30 mmHg, with an average flow rate of approximately 5·10-4

ml/min [56].
Blood vessels must be distensible to provide capacitance and pulse-damping in the

circulation, but they must also be stable to inflation over a range of pressure [73],
presenting a non-linear elastic behavior. The Young’s modulus of the vascular wall
increases with strain, being about 0.2 MPa at diastolic pressure, and about 1.4 MPa at
systolic pressure [12]. The endothelial lumen is constantly exposed to hemodynamic
shear stresses that range from 1 to 6 dyne/cm2 in the venous system, while from 10 to
70 dyne/cm2 in the arterial vascular network [57]. The burst pressure ranges from 1600
mmHg for the saphenous vein to about 3200 mmHg for the internal mammary artery
[55]. Circumferential wall strain ranges between 10% and 15%, whereas longitudinal
strain ranges from 40% to 65% [74].
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Ovine and bovine species are animal models widely used in vascular TE research
due to their large size and similarity with respect to human vascular tissue. Ovine
common carotid artery is around 100 mm long, without any bifurcation, and 4 mm in
diameter. The ovine normal heart rate ranges from 50 to 80 bpm (0.8 - 1.3 Hz), the
maximum heart rate ranges from 260 to 280 bpm (4.3 - 4.6 Hz), and the mean arterial
pressure is 70 mmHg [75]. Bovine species present arteries of approximately 5 mm in
diameter [76], heart rate ranging from 36 to 84 bpm (0.6 - 1.4 Hz) [77], and arterial
mean pressure at heart level ranging from 84 to 227 mmHg, associated respectively
with systolic/diastolic pressures of 118/62 and 275/195 mmHg [78]. Although used less
often, dogs are also considered a valuable model for studying vascular disease due to
their convenient size [79].

4. BIOREACTORS
As already discussed, generation of tissue with complex structure and function is not
feasible by culturing cells within Petri dish systems, since without the appropriate
chemico-physical stimuli and 3D environment, cells cannot maintain their shapes,
phenotypes, and roles, and lose the ability to proliferate and form organized tissues
[27]. Many attempts have been made to culture cells in environments mimicking, at
least partially, the in vivo milieu, where mechanical load, electrical stimuli, perfusion
pressure, autocrine/paracrine and systemic hormonal stimulation are necessarily
interwoven [80]. The use of bioreactors properly designed to build up in vitro cell
culture models allowed to study the effects of biophysical factors under closely
monitored and tightly controlled culture conditions and to generate tissues in vitro
[27, 33, 81]. Bioreactors are closed, standardized and almost operator-independent
systems assuring greater reproducibility, traceability, scalability, and lower
contamination risk than traditional manual processes. Furthermore, bioreactors can be
easily optimized according to present and future regulations [45, 46].

The use of bioreactors allows to make automated, repeatable, scalable and
clinically sustainable biological processes such as: (1) cell expansion; (2) cell
seeding of scaffolds; (3) cellular differentiation and tissue maturation; (4) effects of
drugs on cells and engineered tissues (drug screening); and (5) in vitro disease model
investigation. Moreover, they can be used as model systems for the investigation of
cell functions and tissue development in specific environmental conditions
(concentrations of oxygen, carbon dioxide, nutrients and biochemical factors;
hydrodynamic conditions; physical stimuli) [43, 82]. Advanced bioreactor
systems should be equipped with the following (Figure 1): (a) sensors and control
systems for a real time, automatic monitoring and control of culture parameters (i.e.,
temperature, pH, biochemical gradients, gas concentrations, pressure, mechanical
and electrical stresses, waste removal, etc.) within the culture chamber; (b)
recirculation/perfusion systems assuring medium replacement and optimized cell
and nutrient distribution within the 3D environment; and (c) physical stimulation
systems for mimicking the native physiological conditions and supporting tissue
maturation [27, 39]. Therefore, for an effective in vitro tissue generation strategy, it
is essential to define not only culture actors (cells, scaffolds, culture medium, growth
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factors, etc.), but also bioreactor’s design criteria, which are dictated by the tissue to
be produced [27, 83].

Focusing on bioreactors designed for the production of cardiovascular constructs
suitable for implantation, the presence of physical stimulation systems (i.e., mechanical
stretching, electrical stimulation, pulsatile flow) is fundamental for promoting the
modulation of cell behavior in terms of proliferation [84], differentiation [85], protein
synthesis and ECM remodeling [86], and for promoting structural and functional tissue
maturation in terms of 3D morphology [35], mechanical strength [87] and electrical
function [60]. Hence, the complexity of the in vivo environment requires the fulfillment
of design criteria assuring proper stimulation in terms of pulsatile forces characterized
by pressures and frequency, shear stresses at physiologic frequencies (i.e., heart rate)
and physiologic flow rate, stroke volume, and stroke rate values [88]. An overview of
the state of the art of bioreactors is provided below for the study of phenomena involved
in the mechanism of cardiovascular tissue formation, and for the in vitro generation of
cardiac and vascular tissues.

4.1. Bioreactors for Cardiac Tissue Engineering
As already discussed, the human heart has a limited capacity to regenerate itself
[89]. Therefore, the generation of 3D engineered cardiac patches to be implanted
into the injured myocardium represents a challenging but effective and promising
therapeutic strategy. However, cardiac TE is still in the research phase, because
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Figure 1. Advanced bioreactor system equipped with (a) sensors and control
systems, (b) recirculation/perfusion systems, and (c) physical stimulation
systems.



several problems are still to be solved to achieve full recovery of a damaged region.
In detail, an engineered cardiac patch should (1) have dimensions (typically 10-50 cm2

of surface area and several millimeters of thickness) and contractile features
adequate to support failing hearts, thus vascularization is fundamental for its
survival; (2) have a compliant response adequate to assure adaptation to systolic
strength and diastolic relaxation; and (3) guarantee structural and electrical
integration with the hosting myocardium [9, 69]. The complexity of the cardiac
tissue makes the fulfillment of these requirements very challenging, since adult
cardiomyocytes quickly dedifferentiate in vitro and the maintenance of their
differentiation in vitro is still an open issue, and neonatal cells are still immature to
obtain effective results from their culture. These open issues have driven the
development of the biomimetic paradigm of cardiac TE, which involves the
application of physiologically-relevant chemical and physical stimuli to cultured
cells [60]. Table 2 summarizes a selection of studies, described in detail and ordered
with respect to the provided physical stimuli and flow conditions, where it is
demonstrated that a synergistic combination of cells, scaffolds and culture
conditions within tailored bioreactors allows to obtain cardiac engineered constructs
which are close to the native tissue in morphology and function, thus offering new
perspectives to basic cardiovascular research and tissue replacement therapy.

In their pioneering studies [90, 68, 105], Eschenhagen, Zimmermann and co-
workers proposed a method for the in vitro production of coherently contracting 3D
engineered heart tissues (EHTs) made of cardiac myocytes from embryonic chicken
[90] and neonatal rats [68, 106] mixed with collagen type I and, only when cultivating
rat cells, Matrigel. Going beyond the limitations of monolayer cultures, sheet-shaped
EHTs provided a simplified model suitable for the investigation of heart-like features of
the constructs and for an analysis of the consequences that culture environment and
genetic manipulations have on contractility. In order to measure EHT contractile forces,
EHTs were then immersed in thermostated organ bathes, and subjected to stable
isometric preloads and electrical pulses (more details in Table 2). EHTs exhibited well-
organized myofilaments with intercellular connections, and coherent contractions after
2-3 days [68, 90].

The influence of chronic mechanical stretch on morphological and functional
behavior of cardiac myocytes was evaluated by Fink et al. [80], who subjected EHTs to
phasic unidirectional stretch (1-20%, 1.5 Hz) for 6 days and then to isometric force
measurement (as in [68, 90]). Stretched EHTs exhibited improved organization of
cardiac myocytes into parallel arrays of rod-shaped cells, increased cell length and
width, and a marked improvement of the contractile function.

To overcome the limitation of the inhomogeneous cell distribution affecting sheet-
shaped EHTs, ring-shaped rat EHTs were cast [91]. After 7 days of culture, ring-shaped
EHTs were transferred into a modified stretch device (Fig. 2a) and submitted to
unidirectional cyclic stretch (10%, 2 Hz) for 7 days; afterward, EHTs were subjected to
isometric force measurements (as in [68, 90]). On circular EHTs, Zimmermann et al.
[91] observed complexes of multicellular aggregates and longitudinally oriented cell
bundles, with morphological features of adult tissue.
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Eschenhagen, Zimmermann and coworkers [5, 105, 106] proved the in vivo
feasibility of the EHT implantation on rats. Implanted EHTs maintained a network of
differentiated cardiac myocytes and were strongly vascularized [5, 105, 106].
Moreover, EHTs grafted on the heart of syngenic rats [106] preserved contractile
function in vivo. More recently, Zimmermann et al. [69] evaluated the performance
of multiloop EHTs implanted in Wistar rat heart muscles after myocardial infarction.
Large force-generating EHTs were produced under elevated oxygen concentration,
under auxotonic load (simultaneous changes in stress and length), and with
supplementation of culture medium with insulin. To facilitate implantation, five
single circular EHTs were stacked crosswise on a tailored holding device, promoting
EHT fusion and allowing contractions under auxotonic load. Synchronously
contracting multiloop EHTs were obtained (about 15 mm of diameter and 1–4 mm of
thickness), suitable for in vivo engraftment. EHTs integrated well and coupled
electrically to the hosting myocardium, exerting beneficial effects on systolic and
diastolic left ventricular function with normalization of epicardial impulse
propagation after engraftment and no evidence of arrhythmogenicity. However,
proarrhythmic risks from EHT implantation are likely to be not negligible in larger,
low-heart-rate, bigger species including humans.

By adopting a multi-chamber bioreactor to impart controlled simultaneous cyclic
strains, Gonen-Wadmany et al. [87] developed a bioartificial engineered cardiac
construct (ECC) capable of synchronized multidirectional contraction. Based on
previous studies [68, 91], ECCs were prepared mixing neonatal rat cardiomyocytes and
sheep aortic SMCs with type I collagen gel, enriched with growth factors and
hormones. ECCs, molded over silicone bulbs, were mechanically stimulated by
inflating and deflating the silicone bulbs with repetitive pneumatic pressure at 1 Hz for
6 days. Cell distribution was found to be homogeneous throughout the ECCs, and the
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Figure 2. (a) Stretch device developed by Eschenhagen [105]. (b) Bioreactor for
electrical stimulation developed by Tandon [60]. (c) Perfusion bioreactor
developed by Maidhof [100]. Figures reproduced with permissions.



use of SMCs resulted in a significant compaction of the collagen gels and in a cardiac
substitute containing a high cell density. Moreover, the authors demonstrated that
cellular and morphological reorganization is highly dependent on the amplitude of
strain stimulation.

In 2007, Birla et al. [92] proposed a multi-chamber bioreactor capable of controlling
tissue stimulation in order to correlate the degree of mechanical stretch to changes in
the contractile performance of 3D bioengineered heart muscle (BEHM) constructs.
Neonatal rat cardiomyocytes were plated on fibrin-coated surfaces of cell culture plates,
with the addition of thrombin, and maintained in incubator for 2 weeks. Spontaneous
contractions of the primary cardiac myocytes resulted in compaction of the fibrin gel
promoting BEHM formation. For another 7 days, BEHMs were mechanically
stimulated within the bioreactor with different time intervals per day (2, 6, and 24
hours). The active force was evaluated by stimulating the BEHMs between parallel
platinum electrodes (more details in Table 2). No apparent physical damage was found
in BEHMs stretched using a stretch protocol of 10% stretch and 1 Hz, with no
significant changes in the active force, specific force, pacing characteristics, or
morphological features, demonstrating the structural stability of the constructs in
response to applied stretch protocol.

By performing 3D suspension cultures of neonatal rat cardiomyocytes on cell-
supports within rotating bioreactor (HARV, Synthecon), Akins et al. [93] investigated
the capacity of isolated heart cells to re-establish tissue architectures in vitro. They
observed the formation of 3D aggregates of mixed populations of ventricular cells,
replicating the distribution observed in vivo, and presenting spontaneous and rhythmic
contraction, suggesting that cardiac cells possess an innate capacity to re-establish
complex 3D cardiac organization in vitro.

Motivated by the need to optimize seeding and perfusion of 3D scaffolds, Carrier
et al. [35] used different bioreactors (flasks, xyz gyrator, and rotating bioreactors) to
investigate the in vitro morphogenesis of engineered cardiac muscle in a cell-polymer-
bioreactor model system. Porous nonwoven meshes of fibrous PGA were seeded with
rat heart cells. Constructs cultivated within rotating bioreactors showed significantly
improved structural and functional properties, with uniformly distributed cellularity,
improved maintenance of metabolic parameters, elongated cell shape, and ultra-
structural features peculiar of native cardiac tissue.

Papadaki et al. [89] cultivated highly concentrated neonatal rat cardiac myocytes,
seeded on laminin-coated PGA scaffolds, within rotating bioreactors. By using a
specific apparatus [107], they stimulated (0.1-5 V, 1 ms, pulses at a rate of 60 bpm) and
recorded extracellular potentials. The engineered cardiac muscle presented a peripheral
region containing cardiac myocytes electrically connected through functional gap
junctions. These constructs did not exhibit spontaneous beating, but responded to
electrical stimulation and showed conduction velocity of propagating electrical
impulses comparable with native tissue.

However, due to the concentration gradients associated with diffusional transport of
nutrients and oxygen, the engineered tissues mentioned above were limited to
approximately 100-µm-thick peripheral layer around a relatively cell-free construct
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interior. To overcome this limitation, Carrier et al. investigated the effects of direct
perfusion [63] and oxygen concentration [94] on engineered cardiac tissues obtained
from fibrous PGA scaffolds seeded with neonatal rat cardiac myocytes. It was found
that direct medium perfusion through the constructs, located within cartridges,
guarantees the following: (1) a reduction of diffusional gradients over macroscopic
distances; (2) the control of local levels of pH and oxygen; (3) the spatial uniformity of
cell distribution; and (4) an increase of construct thickness [63]. It was also proven that
a marked positive correlation exists between medium pO2 and the aerobicity of cell
metabolism, DNA and protein content, and the expression of cardiac-specific markers
[94]. However, the system in [94] had two important limitations: (1) direct perfusion
exposes cardiac cells to hydrodynamic shear stress values (0.2-1 dyn/cm2 for perfusion
rate 0.6-3 ml/min, respectively) higher than the physiological ones; (2) cell density of
engineered tissue was approximately only the 20-25% of the density in native cardiac
tissue [35, 63, 94]. To improve cell density Radisic et al. [95, 108] developed a new
seeding strategy within the same perfusion system as in [94]. Using Matrigel as vehicle
for cell delivery, neonatal rat cardiomyocytes were seeded into collagen sponges and
cultured in perfused cartridges with alternating medium flow. Initial cell densities
corresponding to those normally present in the adult rat heart (about 108 cells/cm3) were
reached, with rapid and spatially uniform cell distribution throughout the perfused
constructs. The result of the direct medium perfusion (0.5 ml/min) approach was high
cell viability, differentiated function of cardiomyocytes and cell protection from critical
hydrodynamic shear. As for the electrophysiological function, it was observed that
constructs cultured in perfusion maintained constant frequency of contractions, whereas
constructs cultivated in orbitally mixed dishes presented episodes resembling
arrhythmia. Further studies [109, 110] demonstrated that cultivation under pulsatile
interstitial fluid flow has beneficial effects on contractile properties, resulting in
enhanced tissue assembly by way of mechanical conditioning and improved mass
transport.

Among biomimetic strategies for in vitro generation of functional engineered cardiac
constructs, several studies focused on the impact of electrical stimulation in enhancing
functional coupling of cells and synchronously contractile tissue constructs formation.
Radisic and coworkers [96] subjected cardiac constructs cultured in vitro (prepared as
in [95]) to a pulsatile electrical field (rectangular, 2 ms, 5 V/cm, 1 Hz) within a glass
chamber fitted with two carbon rods and connected to a cardiac stimulator. The
application of electrical stimulation induced cell alignment and coupling, and promoted
the establishment of gap junctions, propagation of pacing signals and generation of
action potentials that induced synchronous macroscopic contractions. Development of
conductive and contractile properties of cardiac constructs was concurrent, with strong
dependence on the initiation and duration of electrical stimulation [96]. Adopting a
similar apparatus (Figure 2B), further studies on electrical stimulation were performed
by Tandon and coworkers [85]. Cardiac constructs were prepared as previously
described [96, 108] and, after 3-5 days of pre-culture, electrical stimulation was
performed (2 ms, 0-12.5 V/cm, 1 Hz). Contractile activity was assessed visually and
ultra-structural differentiation and morphological and constitutive hallmarks of
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maturing cardiomyocytes were observed. In more recent studies [60, 97], Tandon and
colleagues focused their work on the optimization of the electrical stimulation, by
systematically varying stimulation parameters (electrode material, amplitude, duration,
and frequency). It was found that engineered cardiac tissues stimulated with carbon
electrodes (monophasic square-wave pulses, 2 ms, 3 V/cm, 3 Hz) presented the highest
density, and the best-developed contractile behavior, with remarkable improvement of
functional performance, cell elongation, tissue compactness and protein levels. In a
further in vitro study, Tandon et al. [98] applied DC electric fields of 6 V/cm (similar to
those encountered in vivo during development or in a post-injury phase) to human
adipose and human epicardial adipose tissue-derived SCs. Upon stimulation, the
following were observed: (1) cell elongation and alignment perpendicular to the applied
electric field; (2) gap junctions disassembly; and (3) upregulation of the expression of
genes for connexin-43, thrombomodulin, vascular endothelial growth factor, and
fibroblast growth factor.

Recently, Barash et al. [99] developed a cultivation system where perfusion and
electrical stimulation were combined by inserting two carbon rod electrodes into a
perfusion bioreactor. Cardiac constructs (neonatal rat cardiac cells seeded on porous
alginate scaffolds) were cultured for 4 days under homogenous perfusion (25 ml/min)
and continuous electrical bipolar pulse (2 ms, 5 V, 1 Hz). The combination of perfusion
and electrical stimulation promoted cell elongation and striation, and enhanced
expression level of connexin-43.

An approach similar to [99] was taken by Maidhof et al. [100], who designed a
bioreactor (Figure 2C) providing both forced perfusion and electrical stimulation to
neonatal rat cardiac cells seeded on channeled PGS scaffolds. Culture medium was
forced to flow downwards through the constructs placed, without the need of fixation,
on a circular array of perforated holes, while electrical stimulation (monophasic square
wave, 3 V/cm, 3 Hz) was obtained via two parallel carbon rod electrodes. Constructs
cultured with simultaneous perfusion and electrical stimulation exhibited substantially
improved functional properties, as evidenced by a significant increase in contraction
amplitude.

A growing research branch focuses on bioreactors’ application for in vitro generation
of cardiac-tissue-like 3D constructs at smaller scales. Recently, miniaturized screening
platforms were developed to study the impact of physical and chemical parameters on
the maturation, structure, and function of the cardiac tissue. The basic idea is to provide
advanced high-throughput, low-volume in vitro models for drug testing and, in
combination with recent induced pluripotent SC technology, disease modeling.
Important requisites towards a screening platform are miniaturization, reduced manual
handling, and automated readout. In 2010, Hansen et al. [101] developed a drug
screening platform based on large series of miniaturized EHTs, fabricated as strips,
where the contractile activity can be automatically monitored. Neonatal rat heart cells
were mixed with fibrinogen/Matrigel plus thrombin and pipetted into rectangular
casting molds in which two flexible silicone posts were positioned. During cultivation,
fibrin-based mini-EHTs (FBMEs) demonstrated cell spreading inside the matrix and
newly formed cell-cell contacts that led to the formation of condensed FBMEs (6.3 mm
length, 0.2-1.3 mm diameter) and to the imposition of direct mechanical load to cells.
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Elongation of cells was observed, accompanied by single cells coherent beating
activity, and, after 8-10 days, FBMEs started to rhythmically deflect the posts. Analysis
of a large series of FBMEs revealed high reproducibility and stability for weeks.
Moreover, tests performed using drugs with known repolarization-inhibitory and
cardiotoxic effects demonstrated the suitability of the FBME system as platform for in
vitro drug screening.

Adopting the same experimental setup used for producing and monitoring FBMEs,
in 2012, Schaaf et al. [47] generated fibrin-based human EHTs (hEHTs) from an
unselected population of differentiated human embryonic SCs containing 30-40% a-
actinin-positive cardiac myocytes. Constructs displayed a dense network of
longitudinally oriented, interconnected and cross-striated cardiomyocytes that allowed
hEHTs to reach regular (mean 0.5 Hz) and strong (mean 0.1 mN) contractions for up to
8 weeks.

In 2011, Kensah and coworkers [102] developed a multimodal bioreactor for
mechanical stimulation of miniaturized bioartificial cardiac tissues (BCTs) and for real-
time measurement of contraction forces during tissue maturation, enabling small-scale
SC-based cardiac TE. Each module connected a cultivation chamber (with a glass
bottom for microscopic assessment) to both a linear motor with integrated position
measurement and a force sensor (measuring range of 0-1N). BCTs were prepared with
neonatal rat cardiomyocytes mixed with type I collagen and Matrigel, according to [91].
BCTs were subjected to cyclic stretch stimulation (10%, 1 Hz) with daily real-time
spontaneous active force measurement. As an end-point analysis, maximum forces were
captured upon electrical stimulation of the tissues at increasing preloads (further details
in Table 2). BCTs presented spontaneous, synchronized contractions with cell
orientation along the axis of strain and a moderate increase in the systolic force
(1.42 ± 0.09 mN vs. 0.96 ± 0.09 mN in controls), with a marked increase in the
measured force after stimulation with noradrenalin (2.54 ± 0.11 mN). The bioreactor
was designed for including additional functions such as electric pacing and culture
medium perfusion. More recently, using the same bioreactor, Kensah et al. [103]
cultured highly purified murine and human pluripotent SC-derived cardiomyocytes to
generate functional BCTs and to investigate the role of fibroblasts, ascorbic acid, and
mechanical stimuli. For the first time, a stimulation strategy for tissue maturation was
combined with a novel concept of tissue formation from non-dissociated cardiac bodies,
which has lead to a dramatic increase in contractile forces, comparable with native
myocardium. BCTs underwent constant static stress, and an additional mechanical
stretch was then applied within the bioreactor using either uniaxial cyclic stretch (10%,
1 Hz) or stepwise growing static stretch (200 µm stepwise elongation), mimicking the
increasing systolic and diastolic pressure in the developing embryonic heart. Real time
BCT active and passive force measurements revealed a considerably enhanced
contractility of murine and human BCTs, leading to a maximum active tension of 4.4
mN/mm2 in human BCTs, only 3- to 5-fold lower than active forces reported for native
human myocardium [111, 112].

In the field of scaffold design for in situ cardiac repair, the bioreactor proposed by
Kensah [102, 103] allowed Dahlmann et al. [113] to test the mechanophysical
properties of a novel in situ hydrogelation system which, mimicking the native ECM,
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allows for the generation of contractile bioartificial cardiac tissue from cardiomyocyte-
enriched neonatal rat heart cells. The proposed in situ hydrogelation matrix is
individually shapeable, exhibits adequate physical and mechanical stability, and is
cytocompatible.

In 2012, Boudou et al. [104] employed microelectromechanical systems (MEMS)
technology to generate arrays of cardiac microtissues (CMTs) embedded within
collagen/fibrin 3D micropatterned matrices. MEMS cantilevers simultaneously
constrained CMT contraction and measured spontaneous contraction forces generated
by the CMTs in real time. Microtissue forces were quantified by taking bright-field and
fluorescence images. Electrical stimulation, obtained by placing two carbon electrodes
on the sides of the samples (biphasic square pulses, 1 ms, 6 V/cm, 0.2 Hz), induced a
better compaction of the matrix and a faster cell alignment, improving the cell coupling.
Moreover, by forcing the CMTs to beat periodically over days, electrical stimulation
increased the positive effect of the auxotonic load due to the stiff cantilevers, leading to
higher cross-sectional stress. The advantage of the solution proposed by Boudou et al.
[104] is that, using a unified approach, it is possible to test the impact of mechanical
preload, matrix stiffness, electrical stimulation, or soluble factors on the structural and
functional properties of engineered CMTs. This could allow routine production of
hundreds of functional CMTs with reproducible contractile phenotyping from readily
available cardiac cells, for high-throughput, low-volume drug screening.

4.2. Bioreactors for Vascular Tissue Engineering
The major challenge for clinical application of vascular TE is the development of small
ID vascular grafts for the coronary and peripheral vasculature [43, 114, 115, 116, 117,
118, 119], characterized by the presence of a confluent endothelium and differentiated,
quiescent SMCs, and providing evidence of mechanical and biological properties for
adequate suture retention at implantation and endurance at systemic arterial pressures
[116, 120]. In detail, the range of vessel diameters suitable to be engineered in vitro is
1-6 mm for veins and 1-8 mm for arteries [121]. As for the treatment of vessels with
diameter smaller than 1 mm, microvascular surgery techniques [122] as well as
angiogenic approaches for promoting the formation of new capillary networks from
existent microvasculature [123] are widely adopted.

In the past decade, a huge amount of bioreactor-based applications were developed,
which have brought vascular TE closer to the clinical application. The following
studies, described in detail and ordered with respect to flow conditioning and perfusion
in Table 3, demonstrate that adequate combinations of vascular cells, scaffolding, and
signaling within dedicated bioreactors have led to the generation of biologically active
vessels, thus offering the potential for permanent and effective treatments of many
vascular diseases.

By adopting a fixed-wall bioreactor, in 1986, Weinberg and Bell [124] produced the
first engineered vascular graft model from a mixed population of bovine aortic ECs,
SMCs, and adventitial fibroblasts seeded on collagen, reinforced with open Dacron
mesh sleeves. The graft presented a multilayered structure, similar to a mammalian
muscular artery; however SMCs and collagen fibers were oriented longitudinally rather
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than circumferentially, with poor and unstable mechanical properties (maximum burst
strength around 323 mmHg).

More encouraging results were achieved by L’Heureux et al. [125], who developed
a cylindrical three-layered construct by sequentially wrapping different cellular sheets,
seeded with human umbilical vein SMCs, human umbilical vein endothelial cells
(HUVECs) and human skin fibroblasts, and cultured in a fixed-wall bioreactor. The
construct was characterized by histological organization of native tissue, high burst
strength (2000 mmHg), positive surgical handling, and a functional endothelium. These
results were confirmed by in vivo tests performed to assess suturability and early
mechanical stability of the construct.

Using continuous flow and perfusion of the vessel lumen, in 2003, Nasseri et al. [84]
developed a device for rotational seeding and culturing of ovine vascular
myofibroblasts seeded onto biodegradable polymer scaffolds, suitable for small- (ID: 5
mm, length: 2 cm) and large- (ID: 12 mm, length: 6 cm) diameter blood vessels.
Continuous flow and mass transfer enhanced by rotation promoted cell adhesion, tissue
growth, and the formation of confluent layers of myofibroblasts on both inner and outer
surfaces of the constructs.

Based on the knowledge that arterial growth during embryonic development is
associated with longitudinal strain, Mironov et al. [59] developed a bioreactor
combining perfusion, with continuous or pulsatile flow, and functional capacity for
longitudinal strain. Periodic variations of longitudinal strain (0-200%) were applied
to silicone tubes and natural bovine carotid arteries (ID: 2–6 mm), adopted as models
of vascular grafts. A pressure transducer and a digital camera monitored the
biomechanical properties of the construct, showing that pressure-circumferential
strain of the construct had a non-linear relationship, and the diameter decreased with
the longitudinal strain.

Imposing similar perfusion conditions, Geeslin et al. [126] designed a bioreactor for
the reconstitution of a decellularized vascular matrix. Within the bioreactor, the graft
was supported at its ends and rotated to guarantee a uniform coating of both the interior
surface (with ECs) and the exterior surface (with SMCs) of the decellularized matrix.
Preliminary tests, performed with a decellularized rat aorta recellularized with rat ECs
at the luminal surface and rat SMCs injected in the culture chamber, showed a uniform
cell coverage, with recellularization achieved both on interior and exterior surfaces of
the reconstituted matrix, demonstrating the potency of the proposed dynamic culture
conditions.

Niklason et al. [120] seeded autologous bovine aortic vascular SMCs and ECs on
highly porous PGA scaffolds and subjected the constructs to physiologically pulsatile
flow (165 bpm). After cultivation, the gross appearance of the vessel was identical to
that of bovine native arteries, and pulsatile stress significantly increased suture retention
strength, wall thickness, and collagen content to values comparable to that of native
vessel (burst pressure > 2000 mmHg). Implanted into the right saphenous artery of
miniature swine, the constructs demonstrated good flow at implantation and remained
open at least for 2 weeks postoperatively.

In 2001, Hoerstrup and coworkers [114] developed an in vitro pulse perfusion
duplicator system. Dynamically cultured constructs, prepared by PGA coated with
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P4HB (poly-4-hydroxybutyrate) and seeded with ovine myofibroblasts and ECs
(ID: 5 mm), exhibited confluent smooth inner surfaces, a higher value of burst strength
(326 mmHg) and a suture retention strength five times greater than statically cultured
constructs, with tissue organization and mechanical properties appropriate for surgical
implantation.

Williams and Wick [127] proposed a modular bioreactor for sequential seeding of
bovine SMCs and ECs onto porous tubular PLA (poly-lactid acid) nonwoven scaffolds
(ID: 4.5 mm, length: 5 cm), providing pulsatile flow and monitoring tissue growth and
maturation. Dynamic culture enhanced cell proliferation, expression of differentiated
phenotype by SMCs, and ECM deposition. Seeding of ECs after SMCs generated a
confluent monolayer in the lumen.

Similar results were reported by Narita et al. [128], who developed a bioreactor
providing a wide range of pulsatile flows with a completely physiological pressure
profile. Biodegradable nonwoven PLA tubes (ID: 2 cm, length: 80 mm, thickness: 1
mm) were seeded with canine SMCs, ECs and myofibroblasts and cultured under
physiological pulsatile pressure. The constructs presented marked total protein content
and high cell number, with cells widely distributed and in close contact with each other.

In 2009, Yazdani et al. [129] proposed a system for seeding, proliferation, and
maturation of rat vascular SMCs seeded on decellularized porcine carotid arteries
(ID: 3-4 mm, length: 5 cm). Recellularized engineered vessels were subjected to
pulsatile flow regimes (1 Hz). Cyclic bioreactor conditioning resulted in increased SMC
proliferation and accelerated the formation of a significant muscular layer.

Bilodeau et al. [130] combined pulsatile flow with perfusion inside and outside the
lumen. They designed a bioreactor (Figure 3a) for 3D regeneration of arterial tissue
(average radius: 3 mm, length: 5 cm, wall thickness: 1 mm) on a cylindrical scaffold.
Once seeded, the inner and outer side of the scaffold were perfused by culture medium
thanks to the rotation of the construct along an horizontal axis. During cell culture,
parameters such as internal flow and stretching of the vessel could be tuned, mimicking
the gradual maturation evolution.

Zhang et al. [131] developed an engineered vascular construct using tubular
electrospun silk fibroin scaffolds (ID: 3 mm, length: 5 cm, wall thickness: 120 µm)
sequentially seeded with human SMCs and human ECs, and cultivated under
physiological pulsatile flow within a dedicated bioreactor (Figure 3B). Dynamic
culture conditions improved mass transport, and enhanced tissue formation,
metabolic activity, cell alignment, and the retention of differentiated cell phenotype.

In 2012, Amensag et al. [132] proposed a multilaminate rolling approach, using a
decellularized human amnion, for the generation of tubular cell-dense constructs which
can be manufactured into different sizes to suit specific applications. Dual perfusion
vascular bioreactors, to isolate lumen and ablumenal circuits, were employed for
seeding HUVECs and human vascular SMCs. Cell-seeded sheets were rolled around a
mandrel to form a tubular construct with concentric layers of cells between each amnion
layer. Graft mechanical properties were controlled by modulating the number of layers,
allowing to match tensile properties and compliance values. Histological assessments
showed tightly bound structures forming uniform tubular constructs.
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Finally, a new approach inspired by fetal development, mechanobiology and optimal
control paradigms was proposed by Couet et al. [133]. A bioreactor system for
measurement and control in real time of culture parameters and continuous modeling
and optimization of TE processes was designed. Culture conditions can be adapted to
the maturation state of the tissues, in order to maximize the efficiency of the
regeneration process by shortening the production of tissues, and to acquire knowledge
about the growth and remodeling process.

5. DISCUSSION AND FUTURE DIRECTIONS
Based on the reviewed literature, it is evident that there are increasing efforts in
developing in vitro strategies and methods for assessing fundamental myocardial and
vascular biology and physiology. In addition, recently, there is an increasing interest in
generation of engineered cardiac and vascular constructs in vitro to repair damaged
tissues in vivo. A large number of cell-scaffold-bioreactor systems were designed and
used as 3D model systems for investigating the developmental aspects of tissue
maturation, and the influence of different biophysical stimuli and mass transport on
tissue formation, structure, and function. By ensuring control and monitoring of
individual parameters (e.g., cell population, seeding density, physical stimuli) separated
from systemic effects existing in vivo, these models provide reliable platforms for (1)
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Figure 3. Dual closed-loop perfusion bioreactors by (a) Bilodeau et al. [130], and
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assessing the individual and combined effects of each parameter on engineered
constructs, and (2) identifying optimal conditions for in vitro guiding the generation and
maturation of organized and functional cardiovascular substitutes.

Recently, bioreactor-based platforms were also designed for drug screening based on
the effects of pharmacological compounds on biological tissues, and, in combination
with the recent induced pluripotent SC technology, for disease modeling as
physiological models of human disease processes that might be prevented or treated if
better understood. The in vitro generation of functional engineered cardiovascular
tissues with morphological and physiological properties of native heart and vessels
suitable for clinical applications still represents a challenge, but the massive research in
recent years provided a significant advance in this direction.

In cardiac TE, recent studies demonstrated that the key modulators of engineered
myocardium are not only the cell composition, differentiation, and orientation, but also
the composition of the embedding matrix and external stimuli such as cyclic stretching
or electrical stimulation. Therefore, bioreactors delivering native-like cyclic mechanical
stretch and electrophysiological stimulation, applied individually or in combination,
markedly contribute to the development of functional engineered constructs.

By imposing physiological stimulations, it is possible to improve cell differentiation
and structural and functional properties of the construct [5, 80, 87, 90, 91, 92, 102, 105,
106]. In particular, physiological cyclic stretching increases matrix and cell density,
improves morphological tissue organization and interconnection of cells, and promotes
contractile characteristics of native myocardium in engineered constructs [80, 87, 92,
106]. The imposition of auxotonic loads (simultaneous changes in stress and length), in
combination with elevated oxygen supply and supplementation of culture medium with
insulin, allows to obtain synchronously contracting multiloop engineered cardiac
constructs ready for in vivo engraftment [69]. Moreover, the application of growing
static stretch protocols for mimicking the increasing systolic and diastolic pressure in
the developing embryonic heart supports sarcomere alignment and cardiomyocyte
coupling [103].

Perfusion, by reducing diffusional gradients associated with mass transport over
macroscopic distances and improving control of local levels of pH and oxygen, improves
cell seeding efficiency throughout the thickness of 3D scaffolds, promotes homogeneous
distribution of oxygen within the culture chamber, increases construct thickness,
enhances the expression of cardiac-specific markers [35, 63, 94, 95], and guarantees high
cell viability by protecting cells from critical hydrodynamic shear [134].

Through physiological electrical field stimuli, ultra-structural differentiation and
morphological and constitutive hallmarks of maturing cardiomyocytes can be obtained.
In particular, DC electric fields, present in vivo during embryonic development and
wound healing, induce directional cell migration and elongation by modulating
morphological and phenotypic characteristics of mesenchymal SCs, and promote
disassembly of gap junctions [98], whereas native-like electrical pulses improve
contractility with a marked level of ultra-structural differentiation [85, 96, 97, 98]. Both
DC and electrical pulse stimulations upregulate the expression of connexin-43 [85, 96,
97, 98]. The combination of mechanical and electrical stimulations promotes the
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electrical interconnection through gap junctions of cardiomyocytes, promoting the
production of an engineered tissue that presents conduction velocity and spatial
distribution of connexin-43 as to the native one [89, 100]. Finally, the combined use of
perfusion and electrical stimulation can induce cell alignment and coupling, increase
the amplitude of synchronous construct contractions and the number of living cells, and
enhance the level of ultra-structural organization and cell viability [96, 99, 108, 110].

No robust methods currently exist to measure both fine-scale cytoskeletal and
extracellular architecture as well as cardiac contractility, the ultimate functional output
of the myocardium. Moreover, due to their size, centimeter-scale constructs are too
expensive to be generated in a high-throughput manner and require histological
sectioning to visualize cellular and extracellular architecture. Therefore recently, for
testing biophysical and chemical culture parameters in a high-throughput and
combinatorial manner, miniaturized screening platforms were developed [101, 102,
103, 104]. These systems are suitable for drug screening [47] as well as for optimization
of culture conditions, ECM design [104, 113], and compensate current challenges in up-
scaling of pluripotent SC-derived cardiomyocytes [103] in the field of disease
modeling.

Concerning vascular TE, the complex layered structure of blood vessels imposes the
use of bioreactor solutions for guaranteeing adequate oxygen and shear stress
distributions for the production of effective substitutes. Perfusion (inside and/or outside
of the vessel lumen), physiological pulsatile flow, rotating culture chamber and
provision of adequate mechanical stress, used individually or in combination, are the
solutions adopted for achieving this goal. In particular, perfusion, combined with
rotational seeding and culturing, enables homogeneous oxygen and shear stress
distributions around the inner and outer area of the construct, promoting the attachment
and proliferation of cells on luminal and exterior surfaces [84, 126]. Continuous
perfusion in combination with variations of longitudinal strain promotes vascular wall
maturation as it happens during vascular development at the embryonic stage [59]. By
imposing physiological pulsatile flows and adequate mechanical stress, morphological
and physical properties of native arteries can be achieved with enhanced cell
proliferation and protein content [114, 120, 127, 128, 129, 132]. Finally, the
combination of pulsatile flow, perfusion inside and outside the lumen, and rotating
vessel systems improves mass transport and aerobic cell metabolism, and enhances
tissue formation, ECM production, cell alignment, and the retention of differentiated
cell phenotype [130, 131].

This review study clearly indicates that specific physical stimuli are essential for cell
differentiation and maturation of cardiovascular substitutes with morphological and
physical properties of native tissues, and bioreactors are the technological solution to
provide these stimuli in a controlled and automated manner.

In fact, in the process of engineering biological constructs, bioreactors allow to (1)
promote uniform and effective cell seeding of 3D constructs, by providing dynamic
perfusion within a 3D environment, (2) enhance nutrient and gas transport and
distribution, with a suitable waste removal, making up for the role of native vascular
network, (3) provide physiological physical stimuli that simulate the native
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environment, and (4) tightly monitor and control the culture parameters in order to
maximize the efficiency of the TE process. However bioreactor technology is still in
evolution, with several limitations to be addressed. Nowadays, even by using a
bioreactor, vascularization and innervation have not yet been achieved in
cardiovascular engineered constructs, although these are fundamental issues for a
functional integration of the graft with host blood supply and tissues. Furthermore, the
supply of oxygen and soluble nutrients is still limited for in vitro culture of 3D thick
tissues. These disadvantages represent the greatest challenges to be addressed in order
to definitively move cardiovascular TE from bench to clinical practice.

In order to overcome these limitations, a more in-depth understanding of the exact
physiological conditions to be reproduced, together with a series of technological
improvements not yet attained, could substantially help. In this effort, significant
advantages could be achieved by a real-time monitoring and control of both culture
operating conditions and construct development. In this context, besides monitoring
the milieu parameters (e.g.: temperature, pressure, flow rate, pH, dissolved O2 and
CO2, metabolite/catabolite concentrations, sterility, etc.), monitoring function and
structure (e.g.: stiffness, force, strength, permeability, composition of the scaffold, cell
number, cell viability, etc.) of developing engineered cardiovascular constructs still
remains a relatively unexplored area and a highly challenging field of research [81].
For example, although contractile function is one of the most important outputs of
engineered heart tissues, only a few existing platforms are equipped with systems for
quantitative force measurement. Some authors transfer the generated tissue from a
cultivation vessel to a measurement device or organ bath chamber [68, 69, 80, 90, 95,
105, 106]. A possible weakness of such approach is that force measurement is
predominantly used as an end-point analysis, and several samples are needed for long-
term data acquisitions, entailing a huge amount of cells needed, more than that for
continuous analyses. Recently developed miniaturized platforms attempt to bridge this
gap by allowing direct (using specific force sensors [102]) or indirect (using optical
analysis [101, 104]) measurement of the contraction forces, providing noninvasive on-
line monitoring during prolonged culture.

Real-time monitoring could allow to investigate the cellular response to specific
culture conditions and to identify the still unknown mechanisms of the cardiovascular
tissue regeneration, while the possibility to adapt the culture parameters to the
maturation phase of the construct could enhance the efficiency of the regeneration
process [133]. Moreover, the possibility to obtain quantitative data without interrupting
the experiment reduces operator-dependent errors and contamination risk, ultimately
enhancing automation and repeatability of the manufacturing process in terms of
traceability and safety of the process itself, allowing functional quality control of
engineered tissues. In this scenario, an optical access could be useful for directly
observing the construct behavior [135, 136, 137] and performing functional imaging
[15] with a non-invasive on-line monitoring during prolonged culture. Advanced
technological techniques, such as Coherent anti-Stokes Raman scattering (CARS)
microscopy in conjunction with second harmonic generation (SHG), could be used to
perform noninvasive analysis and to obtain simultaneous imaging of cell morphology
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and distribution of ECM components throughout the 3D construct [138]. Moreover,
bioreactors should be equipped with specific sensors and control system networked
together for the on-line, high throughput monitoring of basic parameters such as
temperature, pO2 and pCO2, in addition to quantities that provide quantitative
information on gene expression, cell metabolism, contraction force and impulse
propagation [133], going beyond subjective and qualitative conclusions [82]. This
scenario could also include the so-called software sensors, recently introduced by Couet
et al. [133], that adopt mathematical or numerical models to provide an evaluation of a
missing measurement, such as elastic modulus or shear stress, that relates the desired
information with other measurements that can be taken online. Further improvements
can come from analytical tools such as computational fluid dynamic [139, 140, 141]
and mathematical models [142], used to assess a priori the optimal design and culture
conditions for the bioreactor. Finally, very recently, micro-bioreactors have been
developed to overcome the conventional bioreactors disadvantage of large operating
volumes, which is a serious limitation in studies involving the use of expensive media
components [101, 102, 103, 104, 143].

Besides technical considerations, regulatory and manufacturing issues also represent
challenges to successfully translate cardiovascular TE technologies from bench to
bedside. The clinical efficacy of a tissue-engineered product will need to be
accompanied by a (1) cost-effective manufacturing process and cost-benefits over
existing therapies, (2) absolute safety for patients, manufacturers, and the environment,
and (3) compliance to the evolving regulatory framework in terms of quality control and
good manufacturing practice requirements. For these reasons, a closed, standardized,
and operator-independent system would assure great benefits in terms of safety and
regulatory compliance, thus improving the cost-effectiveness of a manufacturing
process, and maximizing the potential for large-scale production in the long-term [81].

6. CONCLUSIONS
In cardiovascular TE, bioreactors are fundamental tools for (1) investigating the
maturation of cardiovascular engineered tissues, since they provide a comprehensive
level of monitoring and control over specific environmental factors in 3D cultures, and
(2) promoting the in vitro generation of functional cardiovascular substitutes. The high
level of automation that can be achieved by bioreactors will allow not only to perform
more controlled, reproducible and statistically significant tests, but in a prospective
vision, it will be essential in routine productions for clinical applications. In fact,
automation allows to improve quality, process safety, and production volume, lowering
risk factors and production costs.

In the near future, with exciting and promising research advancements, it is expected
that the increasing interaction among scientists, engineers, and clinicians will translate
the research-based field of cardiovascular TE into clinical practice. In this process, the
transition from bench to bedside will require a switch from highly flexible bioreactors
to specialized bioreactors, implementing the defined bioprocesses in a standardized
way. The resulting devices will become a key factor and synonymous of advanced
systems for the development of automated, monitored, standardized, traceable, cost-
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effective, and safe manufacturing processes of production of structurally and
functionally well-defined 3D cardiovascular engineered tissues for large-scale clinical
applications, overcoming limitations of conventional manual techniques and bridging
the gap between healthcare and engineering.
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