340 research outputs found

    Genomic and Proteomic Biomarker Discovery in Neurological Disease

    Get PDF
    Technology for high-throughout scanning of the human genome and its encoded proteins have rapidly developed to allow systematic analyses of human disease. Application of these technologies is becoming an increasingly effective approach for identifying the biological basis of genetically complex neurological diseases. This review will highlight significant findings resulting from the use of a multitude of genomic and proteomic technologies toward biomarker discovery in neurological disorders. Though substantial discoveries have been made, there is clearly significant promise and potential remaining to be fully realized through increasing use of and further development of -omic technologies

    High-content siRNA screening of the kinome identifies kinases involved in Alzheimer's disease-related tau hyperphosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurofibrillary tangles (NFT), a cardinal neuropathological feature of Alzheimer's disease (AD) that is highly correlated with synaptic loss and dementia severity, appear to be partly attributable to increased phosphorylation of the microtubule stabilizing protein tau at certain AD-related residues. Identifying the kinases involved in the pathologic phosphorylation of tau may provide targets at which to aim new AD-modifying treatments.</p> <p>Results</p> <p>We report results from a screen of 572 kinases in the human genome for effects on tau hyperphosphorylation using a loss of function, high-throughput RNAi approach. We confirm effects of three kinases from this screen, the eukaryotic translation initiation factor 2 α kinase 2 (EIF2AK2), the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and the A-kinase anchor protein 13 (AKAP13) on tau phosphorylation at the 12E8 epitope (serine 262/serine 356). We provide evidence that EIF2AK2 effects may result from effects on tau protein expression, whereas DYRK1A and AKAP13 are likely more specifically involved in tau phosphorylation pathways.</p> <p>Conclusions</p> <p>These findings identify novel kinases that phosphorylate tau protein and provide a valuable reference data set describing the kinases involved in phosphorylating tau at an AD-relevant epitope.</p

    Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

    Get PDF
    Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD/mdx mouse, a transgenic model carrying the full-length human dystrophin gene with mdx background, and achieved for the first time more than 70% efficiency of targeted human dystrophin exon skipping in vivo systemically. We also established a GFP-reporter myoblast culture to screen AOs targeting human dystrophin exon 50. Antisense efficiency for most AOs is consistent between the reporter cells, human myoblasts and in the hDMD/mdx mice in vivo. However, variation in efficiency was also clearly observed. A combination of in vitro cell culture and a Vivo-Morpholino based evaluation in vivo systemically in the hDMD/mdx mice therefore may represent a prudent approach for selecting AO drug and to meet the regulatory requirement

    Improve in-depth immunological risk assessment to optimize genetic-compatibility and clinical outcomes in child and adolescent recipients of parental donor kidney transplants: protocol for the INCEPTION study.

    Get PDF
    BACKGROUND: Parental donor kidney transplantation is the most common treatment option for children and adolescents with kidney failure. Emerging data from observational studies have reported improved short- and medium-term allograft outcomes in recipients of paternal compared to maternal donors. The INCEPTION study aims to identify potential differences in immunological compatibility between maternal and paternal donor kidneys and ascertain how this affects kidney allograft outcomes in children and adolescents with kidney failure. METHODS: This longitudinal observational study will recruit kidney transplant recipients aged ≤18 years who have received a parental donor kidney transplant across 4 countries (Australia, New Zealand, United Kingdom and the Netherlands) between 1990 and 2020. High resolution human leukocyte antigen (HLA) typing of both recipients and corresponding parental donors will be undertaken, to provide an in-depth assessment of immunological compatibility. The primary outcome is a composite of de novo donor-specific anti-HLA antibody (DSA), biopsy-proven acute rejection or allograft loss up to 60-months post-transplantation. Secondary outcomes are de novo DSA, biopsy-proven acute rejection, acute or chronic antibody mediated rejection or Chronic Allograft Damage Index (CADI) score of > 1 on allograft biopsy post-transplant, allograft function, proteinuria and allograft loss. Using principal component analysis and Cox proportional hazards regression modelling, we will determine the associations between defined sets of immunological and clinical parameters that may identify risk stratification for the primary and secondary outcome measures among young people accepting a parental donor kidney for transplantation. This study design will allow us to specifically investigate the relative importance of accepting a maternal compared to paternal donor, for families deciding on the best option for donation. DISCUSSION: The INCEPTION study findings will explore potentially differential immunological risks of maternal and paternal donor kidneys for transplantation among children and adolescents. Our study will provide the evidence base underpinning the selection of parental donor in order to achieve the best projected long-term kidney transplant and overall health outcomes for children and adolescents, a recognized vulnerable population. TRIAL REGISTRATION: The INCEPTION study has been registered with the Australian New Zealand Clinical Trials Registry, with the trial registration number of ACTRN12620000911998 (14th September 2020)

    Improve in-depth immunological risk assessment to optimize genetic-compatibility and clinical outcomes in child and adolescent recipients of parental donor kidney transplants: protocol for the INCEPTION study

    Get PDF
    Background: Parental donor kidney transplantation is the most common treatment option for children and adoles‑ cents with kidney failure. Emerging data from observational studies have reported improved short- and medium-term allograft outcomes in recipients of paternal compared to maternal donors. The INCEPTION study aims to identify potential diferences in immunological compatibility between maternal and paternal donor kidneys and ascertain how this afects kidney allograft outcomes in children and adolescents with kidney failure. Methods: This longitudinal observational study will recruit kidney transplant recipients aged ≤18 years who have received a parental donor kidney transplant across 4 countries (Australia, New Zealand, United Kingdom and the Netherlands) between 1990 and 2020. High resolution human leukocyte antigen (HLA) typing of both recipients and corresponding parental donors will be undertaken, to provide an in-depth assessment of immunological compat‑ ibility. The primary outcome is a composite of de novo donor-specifc anti-HLA antibody (DSA), biopsy-proven acute rejection or allograft loss up to 60-months post-transplantation. Secondary outcomes are de novo DSA, biopsyproven acute rejection, acute or chronic antibody mediated rejection or Chronic Allograft Damage Index (CADI) score of >1 on allograft biopsy post-transplant, allograft function, proteinuria and allograft loss. Using principal component analysis and Cox proportional hazards regression modelling, we will determine the associations between defned sets of immunological and clinical parameters that may identify risk stratifcation for the primary and secondary outcome measures among young people accepting a parental donor kidney for transplantation. This study design will allow us to specifcally investigate the relative importance of accepting a maternal compared to paternal donor, for families deciding on the best option for donation. Discussion: The INCEPTION study fndings will explore potentially diferential immunological risks of maternal and paternal donor kidneys for transplantation among children and adolescents. Our study will provide the evidence base underpinning the selection of parental donor in order to achieve the best projected long-term kidney transplant and overall health outcomes for children and adolescents, a recognized vulnerable population.Wai H. Lim ... Michael Collins ... et al

    Advances in gene therapy for muscular dystrophies

    Get PDF
    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments
    corecore