51 research outputs found
Characterization of A Novel Avalanche Photodiode for Single Photon Detection in VIS-NIR Range
In this work we investigate operation in the Geiger mode of the new single
photon avalanche photo diode (SPAD) SAP500 manufactured by Laser Components.
This SPAD is sensitive in the range 400-1000nm and has a conventional
reach-through structure which ensures good quantum efficiency at the long end
of the spectrum. By use of passive and active quenching schemes we investigate
detection efficiency, timing jitter, dark counts, afterpulsing, gain and other
important parameters and compare them to the "standard" low noise SPAD C30902SH
from Perkin Elmer. We conclude that SAP500 offers better combination of
detection efficiency, low noise and timing precision
Analysis of detector performance in a gigahertz clock rate quantum key distribution system
We present a detailed analysis of a gigahertz clock rate environmentally robust phase-encoded quantum key distribution (QKD) system utilizing several different single-photon detectors, including the first implementation of an experimental resonant cavity thin-junction silicon single-photon avalanche diode. The system operates at a wavelength of 850 nm using standard telecommunications optical fibre. A general-purpose theoretical model for the performance of QKD systems is presented with reference to these experimental results before predictions are made about realistic detector developments in this system. We discuss, with reference to the theoretical model, how detector operating parameters can be further optimized to maximize key exchange rates
Controlling passively-quenched single photon detectors by bright light
Single photon detectors based on passively-quenched avalanche photodiodes can
be temporarily blinded by relatively bright light, of intensity less than a
nanowatt. I describe a bright-light regime suitable for attacking a quantum key
distribution system containing such detectors. In this regime, all single
photon detectors in the receiver Bob are uniformly blinded by continuous
illumination coming from the eavesdropper Eve. When Eve needs a certain
detector in Bob to produce a click, she modifies polarization (or other
parameter used to encode quantum states) of the light she sends to Bob such
that the target detector stops receiving light while the other detector(s)
continue to be illuminated. The target detector regains single photon
sensitivity and, when Eve modifies the polarization again, produces a single
click. Thus, Eve has full control of Bob and can do a successful
intercept-resend attack. To check the feasibility of the attack, 3 different
models of passively-quenched detectors have been tested. In the experiment, I
have simulated the intensity diagrams the detectors would receive in a real
quantum key distribution system under attack. Control parameters and side
effects are considered. It appears that the attack could be practically
possible.Comment: Experimental results from a third detector model added. Minor
corrections and edits made. 11 pages, 10 figure
Characterizing a source of fission fragments for a gas jet
A model for the rate at which various primary fission products stop in the gas of the source chamber of a gas jet has been constructed. It describes the absorption of fission fragments in Al foils placed between the 235 U deposit and the gas chamber as well as the penetration of fragments through the gas. The model is based on reported ranges (mean values as a function of A and the dispersion in ranges) and measured activities of Kr and Xe.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43112/1/10967_2005_Article_BF02060552.pd
Superconducting single photon detectors integrated with diamond nanophotonic circuits
Photonic quantum technologies promise to repeat the success of integrated
nanophotonic circuits in non-classical applications. Using linear optical
elements, quantum optical computations can be performed with integrated optical
circuits and thus allow for overcoming existing limitations in terms of
scalability. Besides passive optical devices for realizing photonic quantum
gates, active elements such as single photon sources and single photon
detectors are essential ingredients for future optical quantum circuits.
Material systems which allow for the monolithic integration of all components
are particularly attractive, including III-V semiconductors, silicon and also
diamond. Here we demonstrate nanophotonic integrated circuits made from high
quality polycrystalline diamond thin films in combination with on-chip single
photon detectors. Using superconducting nanowires coupled evanescently to
travelling waves we achieve high detection efficiencies up to 66 % combined
with low dark count rates and timing resolution of 190 ps. Our devices are
fully scalable and hold promise for functional diamond photonic quantum
devices.Comment: 28 pages, 5 figure
An application of two photon entangled states to quantum metrology
Besides many interesting application to the study of foundations of quantum
mechanics, entangled state are now assuming a large relevance for some
practical application. In particular, we discuss most recent results obtained
in our laboratory on the use of two photons entangled states produced in
parametric down conversion for absolute quantum efficiency calibration of
photodetectors, in photon counting regime.Comment: to be published in Journ. of Mod. Opt. As proceeding of "Entanglement
and Decoherence", Gargnano, September 199
- …